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Abstract Crawford and Sobel (Econometrica 50(6):1431–1451, 1982) is a seminal
contribution that introduced the study of costless signalling of privately held infor-
mation by an expert to a decision maker. Among the chief reasons for its widespread
application is the comparative statics they develop between the extent of strategically
transmitted information and the degree of conflict in the two players’ preferences. This
paper completes their analysis by establishing that in their general model, almost full
revelation obtains as the two players’ preferences get arbitrarily close to each other.
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1 Introduction

Crawford and Sobel (1982) (CS) introduced a fairly general model of costless com-
munication (cheap talk) by an informed expert to a decision maker. In particular, they

M. Agastya
School of Economics, University of Sydney, Sydney, Australia
e-mail: murali.agastya@sydney.edu.au

M. Agastya
Indian Institute of Management Bangalore, Bangalore, India

P. K. Bag (B) · I. Chakraborty
Department of Economics, National University of Singapore, Singapore, Singapore
e-mail: ecsbpk@nus.edu.sg

I. Chakraborty
e-mail: indro@nus.edu.sg

123



M. Agastya et al.

study how the differing objectives of the decision maker from those of the expert cause
the latter to strategically limit the transmission of information. The degree of conflict
in the two players’ preferences is parameterized by a scalar, say b, often referred to
as the ‘bias’. b = 0 denotes the case of no conflict at which the two players’ ex-post
optimal actions coincide. When there is no conflict, there can of course be a fully
revealing equilibrium, but full revelation cannot occur if there is any conflict. In fact,
they show that any equilibrium partitions the continuum of states into finitely many
sets. In equilibrium, only the element of the partition in which the true state lies is
reported. The CS model or its variants have been used extensively to study a wide
range of issues: merits of open vs. closed legislative rules; the politics of special inter-
est groups; doctor patient interactions; issues in corporate governance; and financial
advice among many others.1 It has also been an important tool in Organizational Eco-
nomics to study the merits of delegating authority. (See Agastya et al. (2014) and the
references therein.)

Among a number of comparative statics results that CS establish, one is on how
the quality of information varies with a change in the bias. In particular, imposing a
certain Condition (M), they show that the maximal possible number of elements in an
equilibrium partition is non-decreasing. This weak monotonicity result leaves open
the question of whether information is almost fully revealed as the two players’ prefer-
ences tend to coincide, or if there is a discontinuity. This paper answers this question
by showing that information is almost perfectly revealed (in the most informative
equilibrium) by the expert if the degree of conflict is small enough. In fact, the result is
obtained under milder conditions on the primitives used in CS to ensure Condition (M).

Continuity of payoffs and information structure is of natural interest in any study
that involves a small divergence of objectives between the decision maker and the
expert.2 Spector (2000) was the first to address the “continuity” of the quality of
information transmission as preferences get close for a particular payoff structure.
Spector’s analysis however assumes non-standard payoff structures for the two agents,
utility functions that rule out even the quadratic loss function type payoffs that are
typical in all applications of CS. In this paper, we present precise conditions under
which the convergence to full information will hold within the context of the original
CS paper. Moreover, as will be evident from the analysis below, the proof of the general
case considered here is non-trivial.

The rest of the paper is divided into two main sections and an Appendix. Section
2 describes the results of CS. Section 3 contains the main result, namely, Theorem 3
that establishes the possibility of almost full revelation of sender’s information when
the bias is sufficiently small. Theorem 3 requires an assumption on the nature of the
equilibria at the limit, i.e., when b = 0. We show (see Claim 1) the sufficient conditions

1 See Gilligan and Krehbiel (1989), Krishna and Morgan (2001), Morgan and Stocken (2003), Benabou
and Laroque (1992), Harris and Raviv (2008) among many other applications of the model. A significant
theoretically motivated literature on strategic information transmission also exists which adds additional
elements to the basic CS-model such as multi-dimensional type uncertainty, partial verifiability of actions,
multiple experts reporting on the state, multiple principals, etc. For example, see Ambrus and Takahashi
(2008) and the references therein or the recent survey by Sobel (2013).
2 For example, this plays a critical role in discussing the relative merits of authority and delegation in
Agastya et al. (2014).
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imposed by CS (see their Theorem 2) imply the sufficient condition of our Theorem
3. This completes our Claim of convergence for the original CS model as well. The
Appendix contains the proof of Claim 1.

2 The Crawford–Sobel game

There are two players, S(ender) and R(eceiver). The former privately observes the
realization, denoted by θ , of a random variable that is distributed according to a differ-
entiable probability distribution function F(θ), with a positive density f (θ) on [0, 1].
She then sends a message from a given message space M. R observes S’s message
and chooses an action which ends the game. We shall refer to θ as the “type” of S.

The ensuing vNM utility of R and S from an action ξ ∈ R at state θ is, respectively,
given by Ur (ξ, θ) and U s(ξ, θ, b), where b ∈ R is an arbitrary parameter. We shall
retain the following assumptions on the vNM utility functions found in CS: Ui is
twice continuously differentiable, Ui

1(ξ, θ) = 0 for some y and Ui
11 < 0. The optimal

actions of the two players under full information of θ , xr (θ) = argmax Ur (ξ, θ)

and xs(θ, b) = argmaxξ U s(ξ, θ, b), are then well defined. It is also assumed that
Ui

12 > 0, a sorting condition, which ensures that xr (·) and xs(·, b) are increasing.
Hence, there is no loss of generality in setting

xr (θ) ≡ θ

by “re-scaling ξ” and reinterpreting Ui . The parameter b, hereafter referred to as the
“bias”, is meant to capture the degree to which the two players’ interests diverge.
This dependence will become clear later, for the moment it suffices to assume that
xr (θ) = xs(θ, 0) for all θ so that there is no conflict on the ex-post optimal actions
when b = 0.

Equilibrium A pure strategy of S is any (measurable) function σs : � −→ M and
R’s strategy is a mapping σr : M −→ R. Without loss of generality, the analysis is
restricted to pure strategies. The composition of a strategy of S with a strategy of R
yields an outcome function Y : � −→ R where

Y (θ) = σr (σs(θ)).

If a strategy profile (σs, σr ) is played, the action Y (θ) is chosen in state θ .

Definition 1 (Equilibrium) An equilibrium consists of a strategy profile (σs, σr ) such
that

U s(Y (θ), θ, b) ≥ U s(Y (θ ′), θ, b) ∀θ, θ ′ ∈ �, (1)

and for every m ∈ R(σs), where R(σs) ⊆ M denotes the range of σs ,

σr (m) ∈ argmax
ξ

∫

θ ′∈σ−1
s (m)

Ur (ξ, θ ′) f (θ ′)dθ ′, (2)

whenever σ −1
s (m) is of non-zero probability.
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Condition (1) is the usual incentive compatibility requirement on S’s behavior. Condi-
tion (2) is the requirement that at every m that is reported along the equilibrium path,
R’s choice is a best response given his updated Bayesian posterior.3 Y (·) is said to be
an EOF if it is the outcome function of some perfect Bayesian equilibrium strategy
profile (σs, σr ).

Also, assume that the message space M is sufficiently rich to allow an onto function
from itself to �. This will ensure that the non-existence of a fully revealing equilib-
rium is not an artifact of the model. If b = 0, since the two players have coincident
interests, it is immediate that a fully revealing equilibrium exists. CS offer a complete
characterization of all the EOF with b 	= 0 as follows: First, define for any a ≤ a′,

x(a, a′) = argmax
ξ

a′∫

a

Ur (ξ, θ) f (θ)dθ (3)

to be the optimal action of R in the event he knows that θ lies in the interval [a, a′].
Also for any a ≤ ξ ≤ a′, write

V (a, ξ, a′, b) = U s(x(a, ξ), ξ, b) − U s(x(ξ, a′), ξ, b). (4)

Next, let a = (a0, a1, . . . , aN ) denote a typical partition of � into N sub-intervals
where 0 = a0 < a1 < · · · < aN = 1 are the end points of the sub-intervals.

Theorem 1 (Crawford and Sobel (1982)) Suppose xr (θ) 	= xs(θ, b) for all θ .

1. Y is an EOF if and only if there exists a partition a = (a0, a1, . . . , aN ) of � such
that

Y (θ) = x(ai , ai+1) (5)

and V (ai−1, ai , ai+1, b) = 0 (6)

for all θ ∈ [ai−1, ai ], and for i = 1, . . . , N − 1.
2. There exists a finite integer Nb such that an equilibrium described in Part 1 exists

if and only if N ≤ Nb.

In words, when b 	= 0, every equilibrium involves partitioning the continuum
of states � into some N sub-intervals. In what follows, we will refer to such an

3 The analysis here is presented in terms of behavioral (pure) strategies whereas CS work with distributional
strategies. This difference is inessential here. Furthermore, the definition of an equilibrium must specify
players’ beliefs at all information sets, including out of the equilibrium path, as well as (1) and (2). Insofar
as our concern is only in the characterization of the equilibrium outcome function (EOF), this is without
loss of generality because, given a strategy profile (σs , σr ) such that (1) and (2) hold, pick θ̂ arbitrarily and
let m̂ = σs (θ̂ ). For any m ∈ M \ R(σs ), which represents an unreached node in the candidate equilibrium
(σs , σr ), prescribe the beliefs of R at m to be the same as those at m̂ and redefine σr (m) = σr (m̂). That
is, R behaves at any unreached equilibrium message exactly as he does upon hearing m̂. Since the original
incentive compatibility conditions prevent any type (other than θ̂) from mimicking the behavior of θ̂ , with
the above prescribed beliefs, every type of S has an incentive to weakly report σs (θ) and makes (σs , σr ) a
perfect Bayesian equilibrium, in the sense of Fudenberg and Levine (1990).
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equilibrium as an N -equilibrium. All types of S within a sub-interval pool to send
the same message. The type at the edge of an interval, say ai , should be indifferent
between pooling with the types in [ai−1, ai ] and those in [ai , ai+1], which gives (5).
Equation (5) ensures that R’s action is a best response at each event that occurs with
a positive probability along the equilibrium path. Nb, being a finite integer, places a
bound on the extent of information transmission that occurs in any equilibrium. We
shall refer to Nb-equilibrium as the most informative equilibrium.

Comparative statics Theorem 1 shows that the quality of strategically transmitted
information is bounded away from full information when the interests do not coincide.
For this, it is enough to assume that xs(θ, b) 	= xr (θ) for all θ . Later in their paper,
to study the comparative statics of the players’ welfare and the quality of information
transmitted as players’ preferences get closer (in terms of b), CS assume that

Ur (y, θ) ≡ U s(y, θ, 0) and U s
13(y, θ, b) > 0 if b > 0.

The above inequality ensures that for each θ , an increase in the distance of b from
0 shifts the preferences of S from those of R for all θ . In particular, xs(θ, b) 	= θ

for all θ when b 	= 0. Furthermore, they introduce a certain property which they
refer to as Condition (M), which essentially amounts to assuming that for every
N ≤ Nb, the solution to the system of equations defined by (5) is unique for
each N . They also develop a sufficient condition on the primitives for the satis-
faction of Condition (M): first define G(ξ, θ, b) := U s

1 (ξ, θ, b) + U s
2 (ξ, θ, b) and

Ĝ(ξ, θ, b) := ∫ θ

0 U s
11(ξ, θ ′, b)dF(θ ′) + f (θ)U s

1 (ξ, θ, b).

Condition (Mb) Given b, G(ξ, θ, b) is non-decreasing in ξ for all b and Ĝ(ξ, θ, 0)

is non-increasing in ξ .
Of the several comparative statics results that are established in CS, the one that is

most relevant for our study may be formally stated as follows:

Theorem 2 (Crawford and Sobel (1982)) Suppose Condition (Mb) holds for all b.
Then Condition (M) holds, and consequently Nb is non-decreasing.

We reiterate that even if one were to assume that Nb → ∞ as b → 0, it still does
not follow that all information is fully revealed in the limit. For, it still leaves open the
possibility that the limiting equilibrium partition has a non-degenerate interval. The
next section shows that this cannot happen, not only under the conditions of Theorem
2, but also more generally.

3 Proximate preferences and informativeness of equilibria

We begin by noting that when b = 0 an N -equilibrium exists for all N . To see this,
begin by considering

�N =
{
(a1, . . . , aN−1) ∈ �N−1 : ai−1 ≤ ai , i = 1, . . . , N − 1

}
.

(Recall a0 := 0 and aN = 1.) Any a ∈ �N−1 describes a way of partitioning � into
some k ≤ N intervals. For any such a, let
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�N (a) =
N∑

i=1

ai∫

ai−1

U s(x(ai−1, ai ), θ, 0)dF(θ)

and

a∗
N ∈ argmax

a
�N (a) ,

which is of course well defined, since �N is compact and �N is continuous.
Later (see Lemma 3), we will show that a∗

i−1,N < a∗
i,N . Therefore, using the

Envelope Theorem, the first-order conditions for characterizing a∗
N are given by

∂�N
(
a∗

N

)
∂ai

= V
(

a∗
N ,i−1, a∗

N ,i , a∗
N ,i+1, 0

)
f (a∗

i ) = 0, i = 1, . . . , N − 1.

Comparing the above first-order conditions with the conditions given in Theorem
1 shows that

(
x∗

N , a∗
N

)
, where x∗

N = (x1(a∗
N ,0, a∗

N ,1), . . . , xi (a∗
N ,i−1, a∗

N ,i ), . . . , xN

(a∗
N ,N−1, a∗

N ,N )), describes an N -equilibrium outcome and a∗
N is an N -equilibrium

partition of the CS game when preferences of R and S coincide, i.e., for b = 0.

Definition 2 An N -equilibrium partition of the CS-game with zero bias a∗
N is said to

be regular if the Hessian H(�N )
(
a∗

N

)
is invertible.

Let �N (b) denote the equilibrium payoff of R in an N -equilibrium when the bias
is b. Recall that the norm of a partition a, denoted by ‖a‖, is the length of its largest
element. The full information payoff of R is

� := E[U s(θ, θ, 0)].

Our main result is as follows:

Theorem 3 (Main result) Assume that a∗
N is regular for all N sufficiently large.

For any ε > 0, there exists δ > 0, such that whenever |b| < δ, there exists an
N-equilibrium such that

1. |�N (b) − �| < ε and
2. ‖aN ‖ < ε.

Before beginning to prove the theorem, we briefly comment on the requirement
of regularity. It is well known that in general, a slight perturbation in the payoffs of
a game can result in a large change to the equilibrium, or even cause non-existence.
In the CS-game, an N -equilibrium exists when b = 0 for all integers N . With the
introduction of a bias b ≈ 0 it is apriori possible that no equilibrium exists for values
of N beyond some integer. Regularity ensures that for every N , there is a N -equilibrium
for some b close to zero.4 The following Claim gives conditions on primitives that
ensure regularity.

4 Equilibrium is after all obtained as the solution to a fixed-point problem. Therefore, the question of the
existence of such an equilibrium reduces to asking for the continuity of a fixed-point mapping. Regularity is
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Claim 1 Suppose Condition (Mb) holds when b = 0. a∗
N is regular for all N .

Proof of the above Claim 1 is in the Appendix. Claim 1, together with Theorems
2 and 3, implies convergence to full revelation at least for the class of environments
presented in Theorem 2 of CS.

3.1 Proof of Theorem 3

The two key steps required for the proof of the theorem may be stated as Lemmas
1 and 2. Lemma 1 concerns the behavior of the N -equilibrium when the players’
preferences are identical, i.e., the case when the bias b = 0. It shows in particular
that in this case information converges to full information and the payoffs are the full
information payoffs as N → ∞.

Lemma 1 limN→∞
∥∥a∗

N

∥∥ = 0 and limN→∞ �N = �.

Lemma 2 considers the existence of an N -equilibrium for an arbitrarily chosen N .
It shows that for a small enough bias (b ≈ 0), such an equilibrium exists.

Lemma 2 Suppose a∗
N is regular for some N. There exists δN > 0 and a continuous

function ϕ : (−δN , δN ) −→ �̇N such that (i) ϕ(0) = a∗
N and (ii) ϕ(b) is an N-

equilibrium partition when the bias is b.

With the above two Lemmas in hand, choose any ε > 0. Using Lemma 1, choose
an integer Nε such that

∥∥a∗
N

∥∥ < ε/2 for all N ≥ Nε. Pick δNε as per Lemma 2
and consider the function ϕ be as given there. There must exist a δ′ ≤ δNε such
that

∣∣�N (ϕ(b)) − �N
(
a∗

N

)∣∣ < ε, since �N and ϕ are continuous and ϕ(0) = a∗
N .

Similarly, there must exist a δ′′ ≤ δN such that
∣∣‖ϕ(b)‖ − ∥∥a∗

N

∥∥∣∣ < ε/2 whenever
|b| < δ′′ and for all such b, ‖ϕ(b)‖ < ε. The statement of the theorem holds for
δ = min{δ′, δ′′, δN }. Proof of the theorem is then complete upon proving Lemmas 1
and 2.

Proofs of the above Lemmas depend on establishing that R’s payoff-maximizing
partition a∗

N in �N does in fact partition � into exactly N sub-intervals. This will be
an easy consequence of Lemma 3 below.

Given a < a′ and ξ ∈ [a, a′], define

W (a, ξ, a′) =
ξ∫

a

U s(x(a, ξ), θ, 0)dF(θ) +
a′∫

ξ

U s(x(ξ, a′), θ, 0)dF(θ).

and

z(a, a′) = argmax
ξ∈[a,a′]

W (a, ξ, a′).

Footnote 4 continued
very close in spirit to the type of conditions that are imposed to ensure the continuity of fixed-point mappings
with respect to some parameter. McLennan (2012) surveys the fixed-point theory from a perspective useful
for Economics.
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Lemma 3 a < z(a, a′) < a′ for any a < a′. Moreover,

V (a, z(a, a′), a) = 0. (7)

Proof (Lemma 3) A routine application of the Envelope Theorem gives us
W2(a, ξ, a′) = V (a, ξ, a′). Recalling that θ uniquely maximizes U s(·, θ, 0) for all
θ , W2(a, a, a′) = V (a, a, a′) > 0 and W2(a, a′, a′) = V (a, a′, a′) < 0. Therefore
z(a, a′) must lie in (a, a′). Equation 7) is merely the first-order necessary condition
for an interior maximum.

Corollary 1 For each N, a∗
N = (a∗

N ,1, . . . , a∗
N ,N−1) satisfies a∗

N ,i−1 < a∗
N ,i for

i = 1, . . . , N and hence ∇�N (a∗) = 0.

In what follows, we will write a∗
i to denote a∗

N ,i , and the context makes it clear
what is the particular underlying value of N . We do not anticipate any confusion.

Proof (Lemma 1) Let �n ≡ �n(a∗
n). Note that (�n) is a non-decreasing sequence,

since �n ⊂ �n+1 for all n and it is clearly bounded above by �. Therefore, it must
be the case that

lim
n→∞(�n+1 − �n) = 0. (8)

It suffices to show that limn→∞ ‖a∗
n‖ = 0, as the other Claim of the Lemma is an imme-

diate corollary to this fact. Assume, by way of contradiction, that limn→∞ ‖a∗
n‖ 	= 0.

We shall show that this results in a contradiction to (8).
For each n, let (a∗

nk
, a∗

nk+1) denote the largest interval (by length) in the partition
a∗

n . Assume, without loss of generality (otherwise take suitable subsequences), that
a∗

nk
→ α and a∗

nk+1 → β. If limn→∞ ‖a∗
n‖ 	= 0, then α < β. By the maximum

theorem, z(·) is continuous and therefore z(a∗
N , a∗

N+1) → z(α, β). Let â denote the
partition with n + 1 intervals obtained from a∗

n by splitting [a∗
nk

, a∗
nk+1] into [a∗

nk
, ξ∗]

and [ξ∗, a∗
nk+1], where ξ∗ = z(a∗

nk
, a∗

nk+1). Also, let x̂ ∈ �n+1 that is obtained from
x∗

n(b) by choosing y(a∗
nk

, ξ∗, 0) and y(ξ∗, a∗
nk+1, 0) in the newly introduced intervals.

Note that

�n+1 (̂x, â, b) = �n + W
(
a∗

n , z
(
a∗

nk
, a∗

nk+1

)
, a∗

nk+1

) − W
(
a∗

nk
, a∗

nk
, a∗

nk+1

)
.

Since �n+1 (̂x, â, b) ≤ �n+1,

�n+1 − �n ≥ W
(

a∗
n , z

(
a∗

nk
, a∗

nk+1

)
, a∗

nk+1

)
− W

(
a∗

nk
, a∗

nk
, a∗

nk+1

)

for all n. Now, the RHS converges to δ = W (α, z(α, β), β) − W (α, α, β) and by
Lemma 3, δ > 0. Thus, the sequence (�n+1 − �n) cannot converge to zero, i.e., (8)
is violated.

Proof (Lemma 2) Let �̇N denote the interior of �N and define g : �̇N ×R −→ R
N−1

where g (a, b) = (g1 (a, b) , . . . , gN−1 (a, b)) is defined by

gi (a, b) = V (ai−1, ai , ai+1, b) f (ai ).
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Note that a ∈ �N is an N -equilibrium of the CS game with bias b if and only if
g (a, b) = 0. Thus, the proof is complete, if for all b sufficiently small, we exhibit a
partition ab ∈ �̇N such that g

(
ab, b

) = 0.
Note that g

(
a∗

N , 0
) = ∇�

(
a∗

N

) = 0. Moreover, the Jacobian Jag
(
a∗

N , 0
) =

H(�N )
(
a∗

N

)
which, given our hypothesis that a∗

N is regular, is invertible. By the
implicit function theorem, there exists a δN > 0 and a continuous function ϕ :
(−δN , δN ) −→ �̇N such that g(ϕ(b), b) = 0 for all b ∈ (−δN , δN ) and ϕ(0) = a∗

N .
For all such b, ϕ(b) is an N -equilibrium partition of the CS-game when the bias is b.

3.2 Quadratic loss, Spector (2000) and Theorem 3

We have, thus, established the continuity of the equilibrium payoffs in the CS game as
preferences of the sender converge to those of receiver. Interestingly, the result obtains
under assumptions at least as general as those found in the original paper, Crawford
and Sobel (1982). Spector (2000) considers the special case where

U s(ξ, θ, b) = u(ξ, θ) + bv(ξ, θ)

for a pair of functions u and v that satisfy the usual assumptions so that U s will
satisfy the usual assumptions. However, the typical parametric form in virtually all
the applications of CS model in the literature use the quadratic form

U s(ξ, θ, b) = −(ξ − b − θ)2.

Clearly, this specification cannot be embedded within Spector’s framework. Yet, it
may be readily verified that

G(ξ, θ, 0) = 0, and Ĝ(ξ, θ, 0) = −2F(θ) − f (θ)(ξ − θ).

Claim 1 and hence Theorem 3 readily show that convergence to full information occurs
with quadratic loss functions.

Appendix

Proof (Claim 1) Throughout U (ξ, θ) ≡ U s(ξ, θ, 0). We will first show that for
a < a′,5

x1(a, a′) + x2(a, a′) ≤ 1. (9)

From the first-order condition that determines x(a, a′) we have

a′∫

a

U1(x(a, a′), θ)dF(θ) ≡ 0.

5 Here, and elsewhere in the proof when a = 0 or a′ = 1, x1(a, a′) and x2(a, a′) should be interpreted as
the right and left derivatives respectively. Similarly for V1(a, â, a′) and V3(a, â, a′) later on in the proof.
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Setting ξ := x(a, a′) and partially differentiating the above with respect to a and a′
gives:

x1(a, a′)
a′∫

a

U11(ξ, θ)dF(θ) + f (a′)U1(ξ, a′) = 0

x2(a, a′)
a′∫

a

U11(ξ, θ)dF(θ) − f (a)U1(ξ, a) = 0.

Summing the above, we have

0 = (
x1(a, a′) + x2(a

′, a′)
) a′∫

a

U11(ξ, θ)dF(θ)

+ f (a′)U1(ξ, a′) − f (a)U1(ξ, a)

= (
x1(a, a′) + x2(a

′, a′)
) a′∫

a

U11(ξ, θ)dF(θ)

+ Ĝ(ξ, a′) − Ĝ(ξ, a) −
a′∫

a

U11(ξ, θ)dF(θ)

= (
x1(a, a′) + x2(a

′, a′) − 1
) a′∫

a

U11(ξ, θ)dF(θ) + Ĝ(ξ, a′, 0) − Ĝ(ξ, a, 0)

≤ (
x1(a, a′) + x2(a

′, a′) − 1
) a′∫

a

U11(ξ, θ)dF(θ),

where the inequality is from the hypothesis of the Claim, that Ĝ(ξ, a, 0) is non-
increasing in a. The fact that U11 < 0 yields (9). Write

V i (a) := V
(
a∗

i−1, a∗
i , a∗

i+1, 0
)

f
(
a∗

i

) =
(

Ur
1

(
xi , ai

)
− Ur

1

(
xi+1, ai

))
f
(
a∗

i

)

where xi := x(a∗
i−1, a∗

i ) and for convenience, set n = N − 1. Then,

H(�N )(a∗
N ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α1 γ1 . . . 0

β1 α2
. . .

...

β2
. . . γn−2 0

...
. . . αn−1 γn−1

0 · · · βn−1 αn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

123



Proximate preferences and almost full revelation in the Crawford–Sobel game

where αi = ∂V i (a∗
N )

∂ai
for i = 1, . . . , n, βi = ∂V i (a∗

N )

∂ai+1
and γi = ∂V i+1(a∗

N )

∂ai
for

i = 1, . . . , n −1. Of course, by symmetry of the Hessian, we have βi = γi . Therefore,
for any vector y = (ξ1, . . . , ξn) 	= 0, setting β0 = V1(0, a∗

1 , a∗
2) f (a1) and βN =

V3(a∗
n−1, a∗

n , 1) f (an) we have

yt H
(
a∗

N

)
y =

n∑
i=1

αiξ
2
i + 2

n−1∑
i=1

βiξiξi+1.

Note that βi > 0 (see Lemma 2 in CS for instance). Assume, for the moment, that

αi ≤ −(βi−1 + βi ). (10)

Hence,

yt H
(
a∗

N

)
y ≤ −

n−1∑
i=1

βi

(
ξ2

i + ξ2
i+1 − 2ξiξi+1

)
− β0ξ

2
1 − βnξ2

n

= −
n−1∑
i=1

βi (ξi − ξi+1)
2 − β0ξ

2
1 − βnξ2

n < 0.

In other words, H(a∗
N ) is negative definite, and hence invertible. So, it remains to show

(10) to complete the proof. Using the notation xi = x(a∗
i−1, a∗

i ) and xi
j = x j (a∗

i−1, a∗
i ),

for j = 1, 2,

1

f (a∗
i )

× ∂V i

∂ai−1
= xi

1U1

(
xi , a∗

i

)

1

f (a∗
i )

× ∂V i

∂ai+1
= −xi+1

2 U1

(
xi+1, a∗

i

)

1

f (a∗
i )

× ∂V i

∂ai
= xi

2U1

(
xi , a∗

i

)
+ U2

(
xi , a∗

i

)

− xi+1
1 U1

(
xi+1, a∗

i

)
− U2

(
xi+1, a∗

i

)
.

Therefore, for i = 1, . . . , n,

1

f (a∗
i )

×
(

∂V i

∂ai−1
+ ∂V i

∂ai
+ ∂V i

∂ai+1

)
=

(
xi

1 + xi
2

)
U1

(
xi , a∗

i

)
+ U2

(
xi , a∗

i

)

−
(

xi+1
1 + xi+1

1

)
U1

(
xi+1, a∗

i

)

− U2

(
xi+1, a∗

i

)
.
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Since xi < a∗
i < xi+1, for all i , U1(xi , a∗

i ) > 0 > U1(xi+1, a∗
i ). Using (9), we then

have

∂V i

∂ai−1
+ ∂V i

∂ai
+ ∂V i

∂ai+1
≤ f (a∗

i ) ×
(

G
(

xi , a∗
i , 0

)
− G

(
xi+1, a∗

i , 0
))

≤ 0,

which in turn completes the proof of (10) for i = 1, . . . , n.
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