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1 Introduction

� In many economic situations where an action affects the welfare of two parties, the formal

decision rights belong to one, the Principal (P), whereas the other party, the expert (A, for

Agent), has information relevant for determining the optimal action. Naturally, P seeks to

elicit information from A. Crawford and Sobel (1982) (CS) is a seminal article that studies the

relation between the quality of advice strategically offered by A and the degree to which her

objectives are aligned with those of P assuming that neither actions nor advice is contractible,

i.e., advice is cheap talk. The CS model or its variants have been used extensively to study a wide

range of issues, e.g., merits of open vs. closed legislative rules, the politics of special interest

groups, doctor-patient interactions, issues in corporate governance, and financial advice.1 Since

Dessein (2002), it has also been an important tool in Organizational Economics to study the

merits of delegation of authority.

An assumption implicit in much of this literature is that the sender privately holds all payoff-

relevant information, i.e., she is an expert at everything. We drop this assumption. We consider

a scenario where the information relevant for P’s optimal decision is partly with A but the rest

of it, that we call residual uncertainty, is outside A’s expertise. Financial manager or clients

personnel can advise only in their respective domains such as market prospects but the infor-

mation about the firm’s overall budget situation gets known only after various other plans get

in shape and the pending orders and expenditures are settled. Specific government departments

often care about a single issue, the costs and benefits of which they are well informed, but the

policy maker also weighs the opinion polls or the resolution of other uncertainties. The CEO of

a multinational company seeks advice from a country division chief, who is presumably given

to “empire building” motive locally, when the CEO’s decision must also take into account the

global conditions that the division chief might not know or care about. Thus the experts in

such cases are partially informed, as opposed to the fully knowledgable experts often assumed

in the cheap-talk/delegation literature.

This article presents a thorough analysis of strategic communication in the presence of resid-

1 See Gilligan and Krehbiel (1989), Krishna and Morgan (2001a), Grossman and Helpman (2001), Köszegi
(2006), Morgan and Stocken (2003), Benabou and Laroque (1992), and Harris and Raviv (2008). A significant
theoretical literature on strategic information transmission also exists which extends the basic CS-model to allow
for multi-dimensional type uncertainty, partial verifiability of actions, multiple experts reporting on the state,
multiple principals etc. (Seidmann and Winter, 1997; Krishna and Morgan, 2001b; Krishna and Morgan, 2004;
Battaglini, 2002; Levy and Razin, 2007; Ambrus and Takahashi, 2008; Li and Madarsz, 2008; Chakraborty and
Harbaugh, 2010). Sobel (2013) offers a nice survey of this literature.
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ual uncertainty and uses it to offer new insights on the issue of delegation vs. authority. Sec-

tion 2 formally introduces the game of Strategic Information Transmission Under Uncertainty

(the SITU game). Essentially, the canonical payoffs of the CS model used in the literature are

augmented to allow for an additional source of uncertainty apart from the uncertainty about

sender’s type. This introduces randomness into P’s ultimate actions from A’s viewpoint. As

a result, A faces countervailing incentives – her ex-post optimal action exceeds that of P or

is lower depending on the realized residual uncertainty. Depending on how the residual uncer-

tainty is distributed, this feature may either improve the quality of communication to the extent

of making truthful reporting the best hedge for A or increase the loss to P from communication.

The implications for delegation of authority follow accordingly.

More specifically, differences in the two players’ objectives in the SITU game are captured

through two parameters – the usual bias in the ex-post optimal actions of the two players when

there is no residual uncertainty, denoted by b, and a parameter that captures the degree to

which the two players differently weigh the residual uncertainty, denoted by w. The players’

ex-post optimal actions coincide only when the value of the realized uncertainty is β = −b/w,

which we term the bias countervailing value. These parameters, together with the distribution

of the residual uncertainty, determine the extent of strategic information transmission by A

(and the payoffs).

We begin with few assumptions on the distribution of residual uncertainty. We are able to

show that the extent of strategic information transmission depends on what we call the effective

bias, which is the usual bias b net of a correction that occurs due to the presence of the residual

uncertainty. In particular, a fully revealing equilibrium exists if and only if the effective bias

is zero (Proposition 1); with a non-zero effective bias, the equilibrium partitions the types in a

manner isomorphic to constant bias version of Crawford and Sobel (1982) (Proposition 2). If

one assumes, however, that either the residual uncertainty is symmetrically distributed or the

expert’s loss function is quadratic, the effective bias can be shown to be the sum of b and the

mean of the residual uncertainty scaled by w. Section 3 uses this closed form solution for the

effective bias to draw interesting insights on the impact of residual uncertainty on strategic in-

formation transmission and equilibrium payoffs. These include: (i) The riskiness of the residual

uncertainty (as measured by its variance) has no impact on information transmission, only the

mean does (Proposition 3); (ii) The extent of information transmission and P’s payoff increase

as the mean of residual uncertainty gets closer to β (Proposition 4 and Fig. 1); (iii) A mean-
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preserving spread of the residual uncertainty, despite not changing the extent of information

transmission, leaves A worse off and P indifferent (Proposition 5).

An important aspect of the internal organization of a firm concerns the allocation of au-

thority to employees. Aghion and Tirole (1997) draw a distinction between formal authority,

typically determined by organizational charts, job descriptions and statement of responsibilities,

and “real authority” which belongs to the person whose view is eventually implemented. Dessein

(2002) uses the CS model (essentially the SITU game absent residual uncertainty) to discuss

the tradeoff faced by P in delegating his formal authority so that real authority now rests with

the better informed A. Continuing with our theme that A cannot be the “know-all” and that

additional information becomes available subsequently, our analysis of the SITU game allows

Dessein’s contribution on delegation of authority to be viewed from a broader perspective.2

For example, recall that absent residual uncertainty, because A’s preferences differ from

those of P, retaining authority is costly for P with A strategically withholding information

about the state. Delegating authority to the better informed A is costly for P as the latter

has to endure the action that is best for A. Dessein (2002) has shown that when preferences of

the two players are “close”, delegation is a superior strategy for P. Proposition 10 (Section 4)

shows that it is impossible to extend this result in a meaningful manner when there is residual

uncertainty. As it turns out, whether delegation is preferred to authority is determined by the

value of β – authority is a superior choice when β ≈ 0 but is an inferior choice when it is large.

As both large and small values of β are consistent with b ≈ 0 and w ≈ 0, it is impossible to

conclude that delegation dominates authority or vice-versa even if two players have arbitrarily

close preferences.

For much of Section 4, the discussion on the tradeoffs between delegation and authority,

we (therefore) fix the preference parameters and ask how changes in the mean and variance of

residual uncertainty affects the delegation vs. authority decision. Residual uncertainty affects

the delegation payoff of P through its variance whereas the effective bias (which depends only

on the mean) affects the payoff from authority. The mean can make the information more or

less precise, but what matters is the magnitude of the mean relative to the size of variance.

2A’s type or private information may be thought of as soft, even subjective, knowledge that is often important
for taking complicated managerial decisions. The residual uncertainty could, for instance, represent the knowledge
relevant for the appropriate decision that is dispersed across the firm whose generation is unrelated to the activities
of the two players. The premise that there could be such a dispersion of information across the organization is
not new – for instance, Bolton and Dewatripont (1994) attribute to Chandler (1966) that the M-form firm is a
direct response to “handling ever increasing flow of information”.
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Our findings are that (i) P’s optimal decision to delegate is non-monotonic in the mean of

the residual uncertainty: for a fixed variance, P prefers to retain authority when the mean is

close to and far from the bias countervailing value whereas for intermediate values delegation is

preferred;3 and (ii) For a given mean, there is a threshold level of risk (variance), below (above)

which delegation (authority) is superior. Dessein (2002)’s result corresponds to the zero risk

case. These results are presented as Propositions 7–9, some of which assume a quadratic loss

function.

With the introduction of residual uncertainty, this article adds to a considerable theoretical

literature on extensions of Crawford and Sobel (1982) noted in footnote 1. The SITU game

presented here embeds two related models each focusing on seemingly two different applications

of the information transmission problem: Harris and Raviv (2005), and Goltsman and Pavlov

(2011). In the former, the authors study the interaction between a CEO and a divisional

manager with differing information about the global and local variables that affect investment

decisions. The latter studies strategic communication between a single sender (or expert) and

multiple audiences with their respective biases. The different states of residual uncertainty in

our model can be reinterpreted as our P being a composition of multiple audiences. From our

Section 2 presentation, the relations between these two models and our SITU game will become

clearer.

In the SITU game, P takes an action only after the resolution of the residual uncertainty.

In Section 3 (‘Uncertain principal and the SITU game’), we compare this with the case where

P has to choose before that uncertainty is resolved. Under the assumption that either type

uncertainty is uniform or preferences are quadratic, we are able to show that both players are

better off in the SITU game. This value of information complements the work of Watson (1996),

McGee (2009), Chen (2009) and de Barreda (2011), where too P gets an additional signal. In

these models, however, the additional signals do not directly affect the vNM utility of P, rather

they are useful due to their correlation with A’s type. Our discussion here concerns the value

of information on a signal that is distributed independently of type uncertainty but affects the

vNM utilities.4

3This conclusion may appear at odds with the one in the previous paragraph. Here, the variance is held fixed
and mean changes. On the other hand, when the preference parameters change, the mean and the variance are
simultaneously affected.

4Seidmann (1990) presents a number of examples where signals that affect payoffs are correlated with type.
Each of these examples violate some assumption of CS to suggest that “there can be effective cheap talk even in
the least promising circumstances”. In the first two examples he removes the single-crossing property assumed in
CS and introduces a condition labeled as (IA) under which all types of the sender agree on the relative ranking
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The key contributions concerning delegation and communication to which our work most

closely relates are Aghion and Tirole (1997), Ottaviani (2000), Dessein (2002), and Krahmer

(2006). The common distinguishing feature here, as also in our model, is that the decision

variable is not contractible.5 In all these models the agent with the superior information is

fully informed but may have possibly multi-dimensional information. In our model, the type

uncertainty of the expert is still one-dimensional, just as in Dessein (2002). By varying the

mean and variance of the residual uncertainty faced by our partially informed agent, we are

able to offer a wider perspective to the results in Dessein (2002) in particular.

The remainder of this article is organized as follows. Section 2 presents the SITU game and

contains the basic results for general distributions of residual uncertainty. Section 3 discusses

the comparative statics of the mean and variance of residual uncertainty under a symmetry

assumption. Section 4 discusses delegation of authority. Section 5 concludes. Unless explicitly

mentioned in the body of the article, proofs of formal results appear in the Appendix.

2 The SITU Game

� There are two players, P and A. The authority for choosing an action that affects the payoffs

of both players rests with P. Their payoffs also depend on two independently distributed real-

valued random variables whose realizations are denoted by θ and s.6 The game unfolds with

A privately observing her “type” θ and sending a message from a given message space M. P

observes both A’s recommendation and realization s. Then he chooses an action which ends the

game. The ensuing vNM utility of P and A from an action ξ ∈ R in state (θ, s) are respectively

up(ξ, θ, s) = −`p(| ξ− θ−wps |) and

ua(ξ, θ, s) = −`a(| ξ− θ−was− b |),

where `a and `p are strictly convex and twice continuously differentiable loss functions. wa, wp

and b are fixed parameters assumed to be non-negative without loss of generality.

of any pair of possible decisions to be taken by the receiver. (This is also the case in Watson (1996).) In his
Example 3, Seidmann considers non-scalar actions and the receiver’s type is in fact common-knowledge. These
are considerably different scenarios to the one considered in this article.

5A significant literature considers the merits of delegation in two-agent settings where the decision variable
is contractible. These include Holmstrom (1984), Armstrong (1994), Melumad and Shibano (1991), Alonso and
Matouschek (2007; 2008), Armstrong and Vickers (2010), Koessler and Martimort (2012), among others.

6The formal analysis extends easily if the additional uncertainty is denoted instead as a vector.
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The uncertainty concerning θ is referred to as type uncertainty whereas uncertainty con-

cerning s is residual uncertainty. Assume that the former is distributed continuously with a

probability density function f on an interval Θ = [θ`, θh]. Let F denote its cumulative probabil-

ity distribution. Residual uncertainty is distributed according to some probability distribution

function G with mean µs and variance σ2s. The message space M is sufficiently rich to allow

an onto function from itself to Θ. We refer to the above as the game of strategic information

transmission under uncertainty, hereafter the SITU game. Observe that the rules of play for

the SITU game are analogous to the game of strategic information transmission in Crawford

and Sobel (1982).

Informational assumptions. Throughout, at the communication stage A is privately in-

formed of θ, and at the decision stage P is informed of s except in the treatment of ‘Uncertain

principal and the SITU game’ in Section 3. In the SITU game, because communication occurs

prior to the realization of s, it is a moot point whether A also learns s eventually. Later in

Section 4 where we discuss P’s ex-ante decision on whether to retain authority, our assumption

is that A knows s except in parts of the discussion of ‘Timing of communication and authority’

in Section 4.

The residual uncertainty enters the payoffs additively with respect to the type uncertainty.

This makes it possible to benchmark the results here with the rest of the literature as the

above reduces to the canonical specification of the CS model studied in the literature by setting

wa = wp = 0.7 In this case, the ex-post optimal actions of P and A are separated by the

constant b for every θ. The parameter b is often referred to as the “bias”, an a priori measure

of the extent of the agency costs within the relationship. We shall refer to this version of the

SITU game as the CS-game with constant bias b.

7It is easy to adapt our analysis to certain other specifications where residual uncertainty is multiplicative.
For instance, suppose `p (|ξ − sθ|) and `a (ξ, θ) = (ξ − θ)2. In particular, on having full knowledge of (θ, s), P
would choose sθ whereas A would chose θ. So there are now different level effects on the ex-post optimal choice
with respect to θ and s. Nonetheless, our method can be readily adapted to deal with this case. Presently, we
define the “effective bias” that determines the degree of information transmission. Following that logic, if P were
to believe A’s reported θ, then A would choose to report her type as

θ∗ (θ) = argminθ ′

∫ (
θ ′s − θ

)2
dG (s) =

µs

σ2s + µ2s
θ.

Now, with b∗ = µs/
(
σ2s + µ

2
s

)
, we recover an analogue of Proposition 1. Other qualitative results can also be

recovered.
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More generally, letting

w : = (wa −wp),

the distance between the ex-post optimal actions of A and P (or ex-post bias) is ∆(s) = |b+ws|.

If w = 0 then, just as in the CS-game, the ex-post optimal action of P is always a distance |b|

away from that of A. However, if w 6= 0, their ex-post optimal choices are identical when the

realization of residual uncertainty equals

β : = −b/w.

In what follows, β will be referred to as the bias countervailing value ( BCV). We shall see that

the location of β vis-à-vis µs plays an important role in determining the extent of strategically

transmitted information in the SITU game.

The above specification captures at least a couple of models in the literature. For instance,

by setting wa = wp = 1, we obtain the model Harris and Raviv (2005) use to study the

interaction between a CEO (P) and a divisional manager (A) in a firm. The profit-maximizing

investment in a company depends on both a local knowledge parameter θ and a global parameter

s. The divisional manager is privy to the local information whereas the CEO learns about the

global parameter prior to making the investment. The ex-post optimal choice of the CEO is

y = θ + s, whereas the divisional manager, perhaps given her proclivity to empire building,

wishes to invest y+ b, in this case presumably b > 0. The model here is richer as it generates

interesting strategic effects even when b = 0 but w 6= 0.

The special case of our model with b = wa = 0 and wp = 1 also relates to Goltsman and

Pavlov (2011)’s and Farrell and Gibbons (1989)’s model of communication via public cheap-

talk with one sender and two receivers.8 The fact that P could take very different decisions

depending on different realizations of s, when reporting about θ, A views as if her message

is being directed to multiple audiences each of whom will then take an independent decision

and A’s payoff becomes the average of the losses resulting from those individual decisions. The

formal structure and analysis of our SITU game thus admits several economic applications noted

in Goltsman-Pavlov and Farrell-Gibbons (e.g., a firm’s claim to profitability affecting both bond

rating and labor negotiations, or capital market and competitors or regulators; a prime minister

8Goltsman-Pavlov generalize the two-state, two-action model of Farrell-Gibbons to a continuum of states and
actions.
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or a bureaucrat communicating with different ministers in charge of various policy making).9

� Effective bias and equilibrium. A pure strategy of A in the SITU game is any (measur-

able) function σa : Θ −→M and P’s strategy is a mapping σp :M× S −→ R. Without loss

of generality, the analysis is restricted to pure strategies. The composition of a strategy of A

with a strategy of P yields an outcome function Y : Θ× S −→ R where

Y(θ, s) = σp(σa(θ), s).

Y(·, ·) is said to be an equilibrium outcome function (EOF) of the SITU game if it is the outcome

function of some Perfect Bayesian equilibrium strategy profile (σa, σp) of the SITU game. For

example, in a fully revealing equilibrium, the outcome function would simply be P’s ex-post

optimal action, i.e., Y(θ, s) = θ+wps.

To provide a complete characterization of all EOFs, we now introduce the concept of effective

bias. Define the function ϕ : R −→ R where

ϕ(ξ) =

∫
`a(|ξ−ws|) dG(s), (1)

and set bs := argminξϕ(ξ). (2)

Note that ϕ inherits the strict convexity of `a(·) which ensures that (2) is well-defined.

bs admits an intuitive interpretation. Assume, for the time being, b = 0 so that a possible

conflict of preferences arises only due to residual uncertainty. Fix the beliefs of P so that

whenever he hears the report θ ′ from A, he believes it to be true. He would then take the

action θ ′ +wps upon observing s. The expected loss of A of type θ, if she were to report her

type to be θ ′, is ϕ(θ ′ − θ). Therefore, a type θ would most prefer that P believes that she is

of type θ+ bs. In other words, bs is the amount by which A optimally distorts her type.10

When `a is quadratic, bs minimizes the sum of squared deviations and hence bs = wµs.

On the other hand, if `a were linear, it minimizes the sum of absolute deviations, and hence

9By setting wp = 0 and letting s be a binary-valued random variable, one might mistakenly think that the
model here also embeds those in Gilligan and Krehbiel (1989) and Krishna and Morgan (2001a) on the design
of legislative rules by imagining P to be the legislature facing two committee members corresponding to the
two realizations of s. In the SITU game, realizations of s are mutually exclusive whereas in the legislative rules
example one committee member has to consider the other report when choosing her own report. This difficulty
does not arise in the converse interpretation of the model alluded to above to match Goltsman and Pavlov (2011),
because there each audience chooses a different action.

10This statement should be read with the caveat that a type θ whose type is such that bs+θ 6∈ Θ would prefer
to mimic type θ` if bs > 0 and θh if bs < 0.
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G(bs) = 1/2, i.e. it is the median of G. Observe however that if G also happens to be symmetric,

then bs = wµs holds. The following lemma confirms this equality for general loss functions.

Lemma 1 Suppose s is symmetrically distributed. Then

1. bs = wµs, and

2. ξ 6= ξ ′ solves ϕ(ξ) = ϕ(ξ ′) if and only if |bs − ξ| = |bs − ξ
′|.

Naturally, when the distribution of states is asymmetric enough, the agent may not want an

unbiased decision because she weighs the outcomes state by state and bs 6= wµs is a possibility.

If b 6= 0, then the notion of optimal distortion attributed to bs would be corrected to

(Effective Bias) b∗ = b+bs.

It is now intuitive that b∗ would play a similar role in the SITU game as the bias b does in the

CS-game in determining the extent of strategic information transmission.11

Proposition 1 A fully revealing equilibrium exists if and only if b∗ = 0.

Interestingly, existence of a fully revealing equilibrium is a possibility in a SITU game despite

the fact that this is a single sender-single receiver pure communication game. This is unlike say

in Battaglini (2002) which has multiple senders or in Kartik, Ottaviani, and Squintani (2007)

where messages affect the payoffs directly and signaling is a possibility (see also Kartik, 2009).

Koessler and Martimort (2012) provide a screening model (with full commitment) where deci-

sion variables are multi-dimensional. Their principal, with an upward bias in each dimension

relative to the agent’s ideal actions, optimally distorts the actions in opposite directions to

create countervailing incentives to minimize his loss due to information asymmetry. In contrast

the decision variables in our setup are non-contractible, but the basic intuitions for communi-

cation in the Koesller-Martimort model and our model are the same: translated in our case,

different dimensions (of Koessler and Martimort) come from different realizations of the interim

uncertainty. Unlike in the above literature, in our analysis the decision maker cannot commit

ex-ante to any of the actions.

11In the discussion following their Proposition 2 concerning public communication to multiple audiences, Golts-
man and Pavlov (2011) in fact recognize this possibility of full revelation in the special case where there are two
audiences. They also remark on the lack of an obvious generalization. The idea of an effective bias and Proposi-
tion 1 below are precisely the required generalization.
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Given the intuitive meaning of effective bias, that full revelation occurs only when b∗ = 0 in

the SITU game is only natural. However, whereas in the above models full revelation obtains

generically, here properties of G must match the preferences parameters b,wa, wp appropriately

to provide exact canceling of the weighing of the ex-post outcomes (for example, µs = β when

Lemma 1 applies) for full revelation to occur.

When b∗ 6= 0, full revelation is no longer possible. There are typically multiple (but finite

number of) EOF, each one distinguished by a partitioning of Θ into finitely many sub-intervals,

just as in a CS-game. To characterize the EOF, first define for any a < a ′,

x(a, a ′) = argminξ

∫a ′
a

`p(| ξ− θ |)f(θ)dθ (3)

to be the optimal action of P in the event he knows that θ lies in the interval [a, a ′]. Also let

a = (a0, a1, . . . , aN) denote a typical partition of Θ into N sub-intervals where θ` = a0 < a1 <

· · · < aN = θh are the end points of the sub-intervals.

Proposition 2 Consider a SITU game with b∗ 6= 0.

1. In any equilibrium, there is a partition a = (a0, a1, · · · , aN) of Θ such that

ϕ(x(ai−1, ai) − ai − b) = ϕ(x(ai, ai+1) − ai − b) (4)

and

Y(θ, s) = x(ai−1, ai) +wps (5)

for all θ ∈ [ai−1, ai], for all s ∈ S and for i = 1, . . . ,N.

2. There exists a finite integer N∗ such that an equilibrium described in Part 1 exists if and

only if N ≤ N∗.

In words, just as in the CS-game, any equilibrium of the SITU game involves partitioning

the state space Θ into some N sub-intervals. All types of A within a sub-interval pool to send

the same message. In what follows, we will refer to such an equilibrium as the N-equilibrium

and the corresponding partition as an equilibrium partition. We shall refer to N∗-equilibrium

as the most informative equilibrium of the SITU game when b∗ 6= 0.
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Remark 1 It is useful to note that for w = 0, the equilibria of the SITU game are isomorphic

to those of a CS-game of constant bias b. This is readily seen by observing that φ(ξ) ≡ `a(|ξ|)

when w = 0. Consequently, (4) reduces to the usual arbitrage conditions found in the CS-game

of constant bias b. This equivalence with respect to the extent of information transmission does

not translate to the payoffs – residual uncertainty does affect the payoffs. Harris and Raviv

(2005) study delegation vs. authority for precisely this case.

3 Residual Uncertainty and Communication

� This section studies the relation between residual uncertainty, the extent of strategic infor-

mation transmission and the equilibrium payoffs, having fixed the preference parameters wa, wp

and b. Following Remark 1, assume for the remainder of this article that w 6= 0, unless stated

otherwise. Furthermore, although a slightly more general treatment is possible, throughout this

section we assume Condition A.

Condition A. Either 1. `a is quadratic, or 2. The residual uncertainty is symmetrically dis-

tributed.12

Quadratic loss is a standard assumption in much of the cheap-talk literature following CS.

Residual uncertainty would be symmetric if s is assumed to follow a normal distribution, as is

often assumed in finance, or is uniform. If we think of the P as a policy maker and θ is the

advice given by a close confidante or a special interest group, and s the average opinion elicited

from opinion polls, then s would follow a Student’s t-distribution, which too is symmetric.

Therefore Condition A may be expected to hold in a variety of environments.

Proposition 3 Suppose Condition A holds in a SITU game. Then b∗ = w(µs − β) and

the extent of strategically transmitted information (i.e. an equilibrium information partition)

depends only on µs, the mean of the distribution of residual uncertainty. It is independent of

σ2s, the variance of residual uncertainty. Moreover,

1. aN = (a0, a1, . . . , aN) is an N-equilibrium partition if and only if

ai =
xi + xi+1

2
−w(µs − β) ∀i = 1, . . . ,N− 1, (6)

where xi = x(ai−1, ai).

12That is, the random variable X = (s − µs) and −X are identically distributed.
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2. N-equilibrium is strictly Pareto-superior13 to an N− 1 equilibrium.

That the variance of residual uncertainty has no effect on information transmission is rather

surprising. Formally, it is shown that the function ϕ is symmetric about E[ws] = wµs under

Condition A. As ϕ is also convex, it follows that bs = wµs. Given this, the arbitrage condition

(4) that makes the marginal type ai indifferent to pooling with types [ai−1, ai) and (ai, ai+1]

reduces to (6). Furthermore, as P makes a choice after observing s, given the information par-

tition, his choice is independent of σ2s. Consequently the equilibrium partition of Θ determined

by (6), or equivalently the extent of information transmission, is independent of the variance of

residual uncertainty.

Let us now turn to the impact of residual uncertainty on the payoffs of the two players.

Observe that the arbitrage conditions expressed in (6) are identical to those found in a CS-

game of constant bias where the bias is b+wµs. Furthermore, P’s decision is contingent on the

realization of the residual uncertainty. We may therefore resort to the well-known comparative

statics of the most informative equilibrium in a CS-game described in ?. Accordingly, whether

the residual uncertainty has a beneficial impact on P’s payoff depends on whether its mean

reduces the effective bias |b+wµs|. The following proposition makes this precise.

Proposition 4 Suppose Condition A holds. P’s ex-ante payoff with respect to µs increases in

the corresponding most informative equilibrium as µs gets closer to BCV, namely β, unless it

is a babbling equilibrium.14

Given the proof of Proposition 3, proof of Proposition 4 would be evident to readers con-

versant with Crawford and Sobel (1982) and is omitted.

Let |b ′| denote the critical value of the bias b in CS-game of constant bias such that mean-

ingful communication occurs in the most informative equilibrium if and only if |b| ≤ |b ′|. Set

β ′ = −|b ′|/w. Proposition 4 is illustrated in Fig. 1 for quadratic loss functions, w < 0 and a

typical value of b.

Recall Harris and Raviv (2005) model from Section 2: wa = wp = 1. As w = 0, changes in

µs will have no impact on how A communicates (see Remark 1). Let us consider as a possibility

a different scenario: w = wa −wp < 0, the CEO (P) places a greater importance on residual

uncertainty than the Manager (A). Assuming b > 0 (empire building motive), now starting

13Throughout, assertions on Pareto comparisons are in terms of ex-ante payoffs.
14The equilibrium is babbling if all types pool.
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from µs = 0 an increase in µs will initially have a beneficial effect on information transmission

(i.e., s counters the agency costs) with A reporting θ precisely at the bias countervailing value

µs = −b/w, then communication becomes gradually worse as µs increases further.

Although the variance σ2s has no impact on A’s information partition, the variance does

affect A’s ex-ante payoff. This is to be expected as A remains uncertain regarding s at the

communication stage. Other things being the same, it is reasonable to expect that a higher

variance lowers A’s payoff. On the other hand, if change in variance is accompanied with a

change in the mean as well, it is difficult to determine whether the change benefits A. For, as

we have seen, the change in µs may lead to more improved communication that may more than

offset the increased uncertainty through an increase in the variance. A general result on the

comparative statics with respect to changes in (µs, σ
2
s) does not seem possible (except perhaps

in the case of quadratic loss functions). Under the stronger assumption on how the change in

residual uncertainty occurs, we have the following result:

Proposition 5 Consider a change in the distribution of residual uncertainty from G to G ′ such

that Condition A applies and µ ′s = µs holds for the corresponding distributions. If G ′ second

order stochastically dominates G, comparing the N-equilibrium of G and G ′, A is better off in

the latter whereas P is indifferent.15

The intuition is as follows. Distributions G ′ and G have the same mean but for the former

the density mass is more concentrated around the mean shifting in from the tails. A’s expected

loss from communication does not depend on θ but depends only on s (see (1)). Because the loss

function `a(.) is convex, a mean-preserving narrowing of the spread would imply lower expected

loss for A. On the other hand, P’s expected loss remains unchanged due to µs = µ
′
s (Fig. 1).

� Uncertain principal and the SITU game. Until now, we have considered the implications

of changes in residual uncertainty by fixing the information structure of the players. Another

way to consider the impact of interim uncertainty is to benchmark the SITU game with a change

that P takes the decision before observing s. Comparing P’s payoff in these two games would

for instance tell us whether P has an incentive to acquire information about s.

We shall refer to this game where both players are uncertain of s as the SITU∗ game.

15Because µ ′s = µs, G admits an N-equilibrium if and only if G ′ does as well (see Proposition 3). To avoid
mathematical technicalities that are costless with regard to economic intuition, the proof of Proposition 5 in the
Appendix is for the case where the distribution of s is bounded above.
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Proposition 6 Suppose Condition A holds.

1. The SITU game has a fully revealing equilibrium if and only if the SITU∗ game has a

fully revealing equilibrium, i.e., if and only if µs = β.

2. If either θ is uniformly distributed or `p is quadratic,

(a) An equilibrium partition of the SITU∗ game is an equilibrium partition of the SITU

game and vice-versa.

(b) Both players are strictly better off in the SITU game relative to the SITU∗ game in

their corresponding equilibria.

The above proposition can be understood as follows. Analogous to (1), define for i = a, p,

ϕi (ξ) = Es [`i (|ξ−wis|)] .

SITU∗ is effectively a CS game in which P’s loss from ξ if θ occurs is now ϕp (ξ− θ) and that

of A is ϕa (ξ− θ− b). If θ is commonly known, P’s optimal action is θ+ bp and that of A is

θ+ba−b where bi = argminξ ϕi (ξ). From Lemma 1, ba = waµs and bp = wpµs. That is to

say, the bias in their actions is b + ba − bp = b + bs. As in a CS game, SITU∗ admits a fully

revealing equilibrium if and only if this bias is zero, i.e. µs = β. Proof of the remaining part is

in the Appendix.

Recall that in general strategic environments, the additional information is not always de-

sirable. The above proposition lists conditions where it is in the interest of both parties for P

to wait for realization of s after communication over θ before making the choice. This exercise

on the value of information about a factor that enters the payoff function complements other

studies on value of information in a CS game such as Watson (1996), de Barreda (2011), Chen

(2009) and McGee (2009). In their models, the additional signal is correlated with the type

uncertainty and thus acquiring it gives P information about A’s type. This effect is absent

in our model, whereas in those models the correlated signal does not directly enter the payoff

function.16

16In Che and Kartik (2009), the two players are symmetric in all respects with regard to their ex-post preferences
but differ in their prior beliefs of the true state. We may incorporate crude analogue of their setting `p = `a and
wa = wp but assume that P and A respectively believe that s is distributed according to symmetric probability
distribution with different means µa and µp. Then the “equilibrium partition” of the SITU and SITU∗ games,
under the hypothesis of Proposition 6, coincides with the CS-game of constant bias |wp| · |µa − µp|.
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4 Residual Uncertainty and Authority

� Apart from eliciting information from A and making a choice, another possible course of

action for P is to delegate decision making authority to A. Until now it has been sufficient

to maintain that P is informed of s at the time of decision and A is uninformed of s at the

time of reporting for all the results stated thus far to hold. From here onwards, we will make

the assumption that s is a public signal available to both players only at the time of decision.

This seems a natural benchmark to study as the heart of the question on whether to delegate

authority is whether the player with the superior information must be given authority. Making

the above assumption will ensure that at each stage, A has superior information.

In the absence of residual uncertainty, Dessein (2002) compares the expected utilities of

the two players under delegation and authority in the CS-game. He shows that under certain

conditions when preferences of P and A are “close”, the former is in fact better off through

delegation. Below (‘Proximate preferences and delegation’), we see how this does not hold under

residual uncertainty. We begin, however, by fixing the preference parameters b,wa and wb and

study how the incentive to retain authority changes with respect to changes in the uncertainty.

That delegation may be an inferior choice for some parameter values of the residual un-

certainty is of course immediate from Proposition 1. Whenever the effective bias is zero, the

SITU game admits a fully revealing equilibrium. Because P decides after being informed of the

residual uncertainty, this is the best possible outcome for P (provided the players coordinate

on this equilibrium). Thus,

• By retaining authority P obtains his first-best utility, not just that it is better than

delegation in an ex-ante sense.

• If P could choose when to seek advice from A, it is optimal for P to do so before the

residual uncertainty is realized.

Further, the above observations do not depend on whether s is publicly observed (after com-

munication) or P privately observes it.

In the remainder of this section, we shall focus on the case where a fully revealing equilibrium

does not exist. For convenience, we introduce the notation

µb := b+wµs.
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To evaluate the costs of delegation it is necessary to specify in greater detail A’s informa-

tion regarding the residual uncertainty at the time of making her choice, should P delegate

authority. Except when we analyze ‘Timing of communication and authority’, we assume that

upon delegation A chooses her action after observing the realization of the residual uncertainty,

just as P does in the SITU game. With this assumption, it is clear that if P were to delegate

authority, A takes the action ya(θ, s) = θ+was+ b in state (θ, s). Hence, P’s payoff from del-

egation is −E[`p(|b+ws|)]. Let K := minξ∈Θ ` ′′p (ξ)/2.
17 Taylor’s expansion of `p about µb with

the Lagrange form for the remainder term shows that P’s payoff from delegation is bounded

above by

π̄D(µs, σ
2
s) = −`p(|µb|) − Kw

2σ2s. (7)

Once P delegates, he has no means of insuring against the variability of A’s choice which

varies with the residual uncertainty. This is evident from the above bound on P’s payoff from

delegation. If P keeps authority, as he takes an action after observing s, he is completely

protected from the variability in the residual uncertainty. By keeping authority, however, P

has to endure the loss of information regarding θ. In the event the fully pooling equilibrium is

played so that no information about θ is conveyed, P optimally chooses x(θ`, θh) (defined in

Eq. (3)) resulting in a payoff of

−

∫
θ∈Θ

`p (|θ− x(θ`, θh)|) dF(θ), (8)

which is of course independent of the residual uncertainty. Moreover, in any informative N-

equilibrium with N > 1, P is only better off (see Part 2, Proposition 3) relative to the babbling

equilibrium payoff above. Comparing (7) with (8), we have the following simple and intuitive

observation:

Proposition 7 In any SITU game, if either the mean or the variance of the residual uncertainty

is sufficiently large, P’s payoff is higher in every equilibrium of the SITU game than under

delegation.

Two points are worth noting. First, although the variance of the residual uncertainty is

17K is well-defined as `p is assumed to be twice continuously differentiable. Further, because we assumed that
`p is strictly convex, K > 0.
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irrelevant for the extent of information transmission (and P’s payoff), it does however affect the

cost of delegation. The value of σ2s plays a non-trivial role in the delegation decision. Second,

it is worth noting that the above result does not depend on Condition A. If Condition A in fact

holds, then P’s payoff in an N-equilibrium of the SITU game (by Proposition 3) is identical to

his payoff in a CS-game with bias µb. The upper bound for payoff from delegation in a SITU

game, presented in (7), is the payoff from delegation in a CS-game with a bias µb minus the

positive term Kw2σ2s. Thus, for a fixed µs, any result that shows the superiority of authority

over delegation in a CS-game also carries over for a SITU game. The reader may refer to

Proposition 4 in Dessein (2002) that presents one such set of conditions. We now turn to the

more interesting case of residual uncertainty with low variance.

� Low variance and authority. The sufficient condition provided in Proposition 7 should

be expected. Indeed, P, by retaining authority, is able to completely hedge against the residual

uncertainty whereas under delegation he is unable to do so. A higher mean and (being risk-

averse) a higher variance in the ex-post bias then increase the cost of delegation in predictable

ways leading P to prefer authority.

A salient feature of Proposition 7 is that it is agnostic as to which equilibrium of the SITU

game is played, albeit under a stringent sufficient condition. As we relax this condition to allow

for residual uncertainty with a low variance, the question of equilibrium selection comes into

play. Because P’s payoff across N-equilibria is increasing in N, the minimal value of the σ2s

required for delegation to become a poor strategy, for a given µs, would be lower as we select

a more informative equilibrium. In fact it turns out that this minimal value of variance falls

rapidly as N increases. To appreciate this, consider for the moment (Proposition 9 considers

more general preferences) the SITU game where P has a quadratic loss function. By borrowing

some of the calculations regarding the linear-quadratic CS-game of a fixed bias in Section 4 of

Crawford and Sobel (1982), we have the following proposition.

Let N∗ ≡ N∗µs , the maximal number of elements in the equilibrium partition in the SITU

game, given µs.

Proposition 8 Consider a SITU game in which `p(ξ) = ξ2, Condition A holds and θ is uni-

formly distributed over [0, 1]. Fix any (µs, σ
2
s). For any N ≤ N∗µs ,
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1. P strictly prefers to retain authority in an N-equilibrium game if and only if

σ2s >
1

12w2N2
+ (

(N2 − 4)

3
)(µs − β)

2. (9)

2. P strictly prefers to retain authority in an N-equilibrium whenever

σ2s >
(2N2 + 2N− 3)

w2N2(N+ 1)2
σ2θ. (10)

Part 2 of Proposition 8 offers a sufficient condition for dominance of authority by relating

the variance in type uncertainty with the variance in the residual uncertainty. The actual

magnitudes are interesting. For instance, if N = 2 then the residual uncertainty need only be

25% more variable than type-uncertainty; with N = 4, residual uncertainty needs to be only

10% more variable. In fact, the rate at which the ratio σ2s/σ
2
θ must fall is of the order of O(N−2).

In other words, as the communication equilibrium becomes more informative, the incentive to

retain authority becomes more attractive at a fairly rapid rate. Of course, one needs to bear in

mind that in order to ensure the existence of an N-equilibrium for N large enough, µs must be

sufficiently close to the BCV.

� Non-monotonicity of delegation. Part 1 of Proposition 8 offers a comparison that is based

only on parameters of the residual uncertainty (µs, σ
2
s). Using this, the mean-variance pairs for

which authority dominates delegation (and vice-versa) are depicted in Figure 2. The curve C

describes the (µs, σ
2
s) pairs such that (9) holds as an equality under the further assumption

that the players coordinate on the most informative equilibrium Nb∗ .
18 Whenever (µs, σ

2
s) lies

below the curve C (in the shaded area), delegation yields a higher payoff to P than authority

whereas the opposite holds above C. Given Proposition 7, the interest is in what happens for

smaller values of (µs, σ
2
s). When σ2s = 0, which is precisely the case considered by Dessein

(2002), whenever the distance of µs to BCV is above a certain threshold value, delegation is

superior. As is evident from the picture, this is no longer true in the presence of some residual

uncertainty. Indeed, for any positive σ2s, there is a threshold value such that if the distance of

µs to the BCV is below the threshold value, the opposite conclusion holds: Retaining authority

is better for P.

The non-monotonicity of the superiority of delegation/authority with respect to |µs−β| for

18See Chen, Kartik, and Sobel (2008) for a justification for selecting the most informative equilibrium.
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a fixed σ2s > 0 is not a-priori obvious. For both the loss from delegation and the loss from

authority are (weakly) decreasing in |µs − β|. In the context of the linear-quadratic example,

the loss from delegation is w2(∆2 + σ2s), and therefore the loss increases at the rate w2 with

respect to ∆2 = (µs − β)
2. On the other hand, in an N-equilibrium, the rate of increase in

payoff with respect to ∆2 is w2
(
N2 − 1

)
/3. For smaller values of ∆ that permit an equilibrium

with N ≥ 3 elements, a decrease in ∆2 is associated with a more than proportional decrease

in the loss from keeping authority relative to delegation. Because for a |∆| close enough to

zero, (a) the loss from delegation is bounded away from zero due to σ2s being positive, and

(b) the loss from authority converges to zero as there is enough transmission of information

(i.e. N∗b∗ is sufficiently large), authority dominates for a |∆| below a certain threshold. This

non-monotonicity holds more generally, beyond quadratic preferences:

Proposition 9 Let `p and ε > 0 be given. There exists an Nε such that for any SITU game

(in which P ’s loss function is `p) that satisfies Condition A, if σ2s > ε and µs is sufficiently close

to the BCV β, so that an N-equilibrium with N ≥ Nε exists, P prefers to retain authority in

such an equilibrium.19

With the above set of results, we are now in a position to comment on the internal orga-

nization of a firm, a la Dessein (2002). Recall that in Dessein, when preferences are close, it

is in fact optimal for the better informed player to have authority. As we are assuming that s

is publicly observable following the communication stage, at all stages of the SITU game and

under delegation, A being exclusively informed of θ is the better informed of the two players.

An important implication of the above results is that when residual uncertainty is present, it is

no longer necessarily optimal for the better informed party to exercise authority.

� Proximate preferences and delegation. So far we have held the preference parameters

fixed and investigated the implications of changes in residual uncertainty parameters. In this

section, we fix the uncertainty parameters µs and σ2s > 0, and examine the implications of

changing preference parameters b, wa and wp. In particular, our focus is on delegation decision

when the preferences of the two players are “close” to each other. Recall the key observation

of Dessein (2002) that in a CS-game, if the preferences are close, then it is optimal for P to

delegate authority. Because the preferences are identical when b = 0 and wa = wp, preferences

19Proof of Proposition 9 relies on a technical result from Agastya, Bag, and Chakraborty (2013), which estab-
lishes that almost full revelation can occur in the most informative equilibrium of a CS-game of fixed bias when
players’ preferences are sufficiently close.
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in the SITU game are close when (b,w) is sufficiently close to (0, 0). But we have the following

result:

Proposition 10 Consider a SITU game in which `p(ξ) = ξ2, Condition A holds and θ is

uniformly distributed over [0, 1]. For any ε > 0, there are (infinitely many) values of (b,w) in

the ε-neighborhood of (0, 0) such that

1. P’s payoff in the most informative equilibrium in the SITU game is higher than under

delegation.

2. P’s payoff in the most informative equilibrium in the SITU game is lower than under

delegation.

In other words (when σ2s > 0), no matter how close the preferences of the two players are,

it is virtually impossible to say whether delegation is better than retaining authority, in sharp

contrast to the result of Dessein (2002) that delegation is superior (when σ2s = 0).

� Timing of Communication and Authority

� Soft information and delegation. So far we have assumed that, upon delegation, A can

observe s prior to making a choice. This is a reasonable assumption where either s is publicly

observable or represents hard information that P can commit to making available to A. In

other cases, s may in fact be soft information privately available to P making him an expert on

some aspects of the decision just as A is on certain other aspects. In such a case, delegation

of authority to A could be accompanied with communication from P regarding s, i.e., we have

a SITU game with the roles reversed. In fact, Harris and Raviv (2005) consider exactly this

mechanism for the uniformly distributed uncertainty, quadratic loss functions and wa = wp = 1.

Our approach enables us to generalize this analysis to environments where Condition A holds

and θ is symmetrically distributed. Below we illustrate the payoff comparison for quadratic loss

functions.

Given a partition a = (a1, . . . , aN) of Θ, define

σ2θ (a) =

N∑
i=1

∫
(xi − θ)

2 f(θ) dθ

where xi = E [θ | [ai−1, ai]]. The players’ respective payoffs in the SITU game in the most
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informative equilibria are

πp = −σ2θ (a) and πa = −σ2θ (a) − µ
2
b −w

2σ2s ,

where a is the equilibrium partition.

Assuming that s is continuously distributed on a compact interval, say [s`, sh], and taking

partition a of this interval, define σ2s (a) similar to σ2θ (a). Now, if P delegates to A and

communicates regarding s, we have a new SITU game where the roles of P and A are reversed

as well as the roles of s and θ. Accordingly, if we denote by a ′ the most informative partition

in this new SITU game, the corresponding payoffs are

π ′p = −σ2s
(
a ′

)
− µ ′b

2
−w2σ2θ and π ′a = −σ2s

(
a ′

)
,

where µ ′b = −b−wµθ is the new effective bias. P prefers authority to delegation if

σ2s
(
a ′

)
+ µ ′b

2
+w2σ2θ > σ2θ (a) ,

and the opposite is true if the (strict) reverse inequality holds. One may now proceed to obtain

analogues of Propositions 8 and 9.

� Ex-post delegation vs. authority. So far in our discussion of control vs. delegation,

we have assumed that P elicits information from A before s is publicly observed. A natural

question is whether P, prior to the resolution of any uncertainty, has an incentive to commit to

postpone the decision to ‘either elicit information about θ or delegate’ until after s is publicly

observed. Proposition 9 offers a ready answer: if the mean bias is close to zero, P has no such

incentives. For, if communication occurs after s is publicly observed, then it is as if P and A

play the CS-game with a constant bias. On the other hand, if the residual uncertainty is such

that |ws| ≈ 0 for all s, we know from Dessein (2002) that P is better off by delegating authority

giving him a loss of `p(|ws|). Therefore, the expected loss from delaying either communication

or delegation until after the realization of s leads to an expected loss for P that is bounded

away from zero provided σ2s > 0 and the support of s contains a set of positive measure close

to 0. However, if the mean bias is sufficiently close to zero, then eliciting information on θ

prior to public revelation of s allows the information loss to be arbitrarily close to zero (see

Proposition A in the Appendix and Proposition 9). In this case, authority dominates delegation.
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� Interim delegation. We considered the question of delegation vs. control in a hierarchy

with a sequential resolution of multiple sources of uncertainty. Given the timing of delegation

considered so far, the resolution of residual uncertainty following delegation exposes P to risks

as A’s ex-post optimal decisions might significantly differ from that of P. To avoid this risk,

we now consider the case where P observes s privately and then decides whether to delegate

or elicit information. We call this interim delegation. There are two differences from what we

considered in the rest of the article. First, P is privately informed of s as opposed to s being

public knowledge. Second, given P’s prior knowledge of s, the decision to delegate or not is

likely to convey to A some information about s.

In principle, the entire analysis of Section 2 can be used to study the interim delegation.

Given P’s equilibrium behavior, at any part of the game tree where he retains authority, there

is a SITU game with A’s posterior (which must be consistent with P’s behavior in equilibrium)

on s describing the nature of uncertainty. Our earlier analysis in this article can be applied to

characterize equilibrium behavior on that sub-tree. One may then work recursively to solve the

entire game. This analysis is sufficiently involved, even in the linear-quadratic case, for it to be

pursued here.

5 Conclusion

� By introducing residual uncertainty in a canonical version of Crawford and Sobel (1982)’s

model involving a constant bias, the article revisits two important issues that have been pre-

viously analyzed extensively – cheap-talk style information transmission and delegation vs.

authority. The role of residual uncertainty for both these issues has been discussed. Our analy-

sis reveals conditions under which the risk of residual uncertainty has no bearing on the extent

of information transmission. Equally, it also overturns a commonly held view that authority

must lie with the better informed party especially when the preferences are close.

The formal analysis relies fairly heavily on the fact that the residual uncertainty is distributed

independently of the type uncertainty. It would be of interest to see how these results generalize

if one allowed for correlation between the two types. Following Che and Kartik (2009), it may

be possible to study correlated uncertainty in a tractable manner if one makes the assumption

that the probability distribution of the variables is bivariate normal. Finally, throughout in the

analysis of delegation we assumed that A also learns about the realization of residual uncertainty
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upon receiving authority. It would be of interest to explore the tradeoff between delegation and

authority under other timing considerations, briefly discussed under ‘Timing of Communication

and Authority’ in Section 4. Each of these requires a separate and elaborate treatment that we

hope will be pursued in the future.

A Appendix

Proof of Lemma 1. Recall that a real-valued random variable X is said to be symmetrically

distributed if Y = E[X] − X and −Y have the same probability distribution. Moreover, for any

integrable function f, E[f(Y)] = E[f(−Y)]. It follows from this that E[`a(|ξ+Y|)] = E[`a(|ξ−Y|)] =

E[`a(|− ξ+ Y|)]. By setting X = ws, we have ϕ(ξ+ E[X]) = E[`p(|ξ+ Y|)] = E[`p(|− ξ+ Y|)] =

ϕ(−ξ+ E[X]). In other words, ϕ is symmetric about E[X] = wµs. The fact that ϕ inherits the

strict convexity of `a tells us that the point of symmetry of ϕ must also be its unique minimum,

i.e., bs = wµs. Q.E.D.

Certain preliminaries are in order before moving to the next Lemma. When the strategy

profile (σa, σp) is played, P plays Y(θ, s) in state (θ, s). Therefore, having fixed an arbitrary

strategy profile (σa, σp), the expected loss of A of type θ if she deviates and mimics the behavior

of type θ ′ is:

La(θ
′, θ) =

∫
`a(|Y(θ

′, s) − θ−was− b|) dG(s). (A.1)

Definition 1 (Equilibrium) An equilibrium consists of a strategy profile (σa, σp) such that

La(θ
′, θ) ≥ La(θ, θ) ∀θ, θ ′ ∈ Θ, (A.2)

and for every m ∈ R(σa), where R(σa) ⊆M denotes the range of σa,

σp(m, s) ∈ argminξ

∫
θ ′∈σ−1a (m)

`p(|ξ− θ
′ −wps|)f(θ ′) dθ ′, (A.3)

whenever σ−1
a (m) is of non-zero probability.

Condition (A.2) is the usual incentive compatibility requirement on A’s behavior. Condition

(A.3) is the requirement that at every m that is reported along the equilibrium path, P’s choice
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is a best response given his updated Bayesian posterior.20

We begin with the preliminary observation that any Y(θ, s) is additively separable in the

two variables. This is intuitive as P chooses an action only after observing s.

Lemma 2 For every EOF Y of the SITU game, there is a unique function ψ : Θ −→ R such

that Y(θ, s) = ψ(θ) +wps.

Proof. Choose any equilibrium strategy profile (σa, σp). At θ, P hears the report m = σa(θ).

The support of his posterior is σ−1a (m). His expected loss from selecting an action ξ ′ after

observing s is proportional to

∫
θ ′∈σ−1a (m)

`p(|ξ
′ − θ ′ −wps|)f(θ ′) dθ ′. (A.4)

The best-response property requires choosing an action that minimizes the above expression.

Now define ψ as follows:

ψ(θ) := arg min
ξ ′

∫
θ ′∈σ−1a (σa(θ))

`p(|ξ
′ − θ ′|)f(θ ′) dθ ′. (A.5)

Comparing the minimand expression in (A.5) with P’s expected loss in (A.4) gives us σp(m, s) =

ψ(θ) +wps. Q.E.D.

Proof of Proposition 1. Suppose a fully revealing equilibrium exists. The EOF is then Y(θ, s) =

θ+wps. Substituting in (A.1) we have

La(θ
′, θ) =

∫
`a(|θ

′ +wps− θ−was− b|) dG(s)

=

∫
`a(|θ

′ − θ− b−ws|) dG(s)

= ϕ(θ ′ − θ− b),

Note that for the equilibrium condition (A.2) to hold, La(θ
′, θ) must have a minimum in its first

20The analysis here is presented in terms of behavioral (pure) strategies whereas CS work with distributional
strategies. This difference is inessential here. Furthermore, the definition of an equilibrium must specify players’
beliefs at all information sets, including out of the equilibrium path, as well as (A.2) and (A.3). Insofar as our
concern is only in the characterization of the EOF, this is without loss of generality because, given a strategy
profile (σa, σp) such that (A.2) and (A.3) hold, pick θ̂ arbitrarily and let m̂ = σa(θ̂). For any m ∈ M \ R(σa),
which represents an unreached node in the candidate equilibrium (σa, σp), prescribe the beliefs of P at m to
be the same as those at m̂ and redefine σp(m, s) = σp(m̂, s). That is, P behaves at any unreached equilibrium
message exactly as he does upon hearing m̂. Because the original incentive compatibility conditions prevent any
type (other than θ̂) from mimicking the behavior of θ̂, with the above prescribed beliefs, every type of A has an
incentive to weakly report σa(θ) and makes (σa, σp) a Perfect Bayesian Equilibrium, in the sense of Fudenberg
and Tirole (1990).
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argument when θ ′ = θ for all θ. On the other hand, from the above equation and definition of

bs, we also note that this minimum occurs when θ ′ − θ − b = bs or θ ′ = θ + b∗. To reconcile

these two facts, we must have b∗ = 0.

Conversely, assume b∗ = 0, i.e. bs = −b. Because M is sufficiently rich, there is no loss of

generality in assuming thatM⊇ Θ. Now suppose that A reports truthfully, i.e. plays σa(θ) = θ

for all θ and P believes this. The equilibrium requirement (A.3) gives σp(θ, s) = θ+wps, which

again gives La(θ
′, θ) = ϕ(θ ′−θ−b) = ϕ(θ ′−θ+bs). By reporting the truth, A’s loss is therefore

ϕ(bs), which is the minimum value of ϕ (and hence of La(·, θ)). Mis-reporting her type cannot

therefore improve A’s payoff. Hence, truthful reporting is an equilibrium strategy. Q.E.D.

The proofs of Proposition 2 and Lemma 3 below require the following preliminaries. Fixing

P’s equilibrium behavior and the corresponding EOF Y(θ, s) = ψ(θ) + wps (see Lemma 2),

the payoff of A of type θ from mimicking to be type θ ′ and sending a signal ξ ′ = ψ(θ ′) is

−ϕ(ξ ′ − θ− b).

For any ξ1 = ψ(θ1) < ψ(θ2) = ξ2, write

D(θ, ξ1, ξ2) =
ϕ(ξ2 − θ− b) −ϕ(ξ1 − θ− b)

ξ2 − ξ1
. (A.6)

Therefore, a type θ would prefer to mimic being type θ2 instead of type θ1 provided (ξ2 −

ξ1)D(θ, ξ1, ξ2)≤0 and conversely otherwise. D(θ, ξ, ξ ′) is the slope of ϕ between the points

ξ− θ and ξ ′ − θ. Because ϕ is strictly convex, this slope must be decreasing in θ.

Lemma 3 Consider an equilibrium where ψ(θ1) = ξ1 and ψ(θ2) = ξ2 are such that ξ1 6= ξ2.

Then |ξ1 − ξ2| ≥ |b∗|. Consequently, Ψ can only take finitely many values.

Proof. Assume, with no loss in generality, that ξ1 < ξ2. Given P’s behavior described by

Lemma 2, the payoff of a type θ from reporting ξi is −ϕ(ξi − θ). By incentive compatibility

of equilibrium behavior of θ1, we must have D(θ1, ξ1, ξ2)(ξ2 − ξ1)≥0, and similarly incentive

compatibility of θ2 requires (ξ2 − ξ1)D(θ2, ξ1, ξ2)≤0. By continuity of D(·, ξ1, ξ2), there must

exist some θ∗ ∈ [θ1, θ2] such that D(θ∗, ξ1, ξ2) = 0. By monotonicity, those types to the right of

θ∗ would strictly prefer to report ξ2 and those to its left strictly prefer to report ξ1. Therefore,

when P hears ξ1 or ξ2, he knows the true type is respectively bounded above or below by θ∗.
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Looking at the definition of ψ in (A.5), we can readily conclude that

ξ1 ≤ θ∗ ≤ ξ2. (A.7)

Furthermore, because ϕ is convex with a minimum at bs, for D(θ∗, ξ1, ξ2) to be zero, we must

have

ξ1 − θ
∗ − b < bs < ξ2 − θ

∗ − b. (A.8)

Combining (A.7) and (A.8), we obtain

ξ1 < θ
∗ < θ∗ + b∗ < ξ2 for b∗ > 0,

ξ1 < θ
∗ + b∗ < θ∗ < ξ2 for b∗ < 0,

implying ξ2 − ξ1 ≥ | b∗ |> 0. Because Θ is a compact set, it follows that Ψ can only take on

finitely values in an equilibrium. Q.E.D.

Proof of Proposition 2. Pick an EOF Y. It follows from Lemma 3 and Lemma 2 that in any

EOF, there are finitely many values, say ξ1 < ξ2 < · · · < ξN, such that Y(θ, s) = ξi +wps for

1 ≤ i ≤ N. Each ξi is a possible report that will be sent by some θ in the equilibrium. We now

determine which types send a given report ξi. To this end, with no loss in generality assume

that N ≥ 2 and first define ai by the equation

ϕ(ξi − ai − b) = ϕ(ξi+1 − ai − b) for i = 1, . . . ,N− 1. (A.9)

Next, recall that the loss of a type θ from reporting ξi, given the behavior of P, is ϕ(ξi−θ) and

hence (ξi+1 − ξi)D(θ, ξi, ξi+1) is the difference in type θ’s payoff from reporting ξi+1 instead of

ξi. Because D(·, ξi, ξi+1) is decreasing, all the types in [θ`, ai) would strictly prefer reporting

ξi instead of ξi+1 whereas the opposite is true for types in (ai, θh] and type ai, by its definition

above, is indifferent between either report. Consequently (ai−1, ai) is the set of types that

strictly prefer to report ξi to any of the other reports. Type ai is indifferent between reporting

ξi and ξi+1, and strictly prefers those over any other report. Therefore, (A.5) reduces to

ξi = arg minξ

∫ai
ai−1

`p(ξ− θ)f(θ) dθ ∀ i = 1, . . . ,N. (A.10)
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Noting that ξi = x(ai−1, ai) completes the proof of Part 1 of the Proposition. For the proof

of Part 2 of the Proposition, one need only follow the arguments given in the proof of Theorem

1 in Crawford and Sobel (1982).21 Q.E.D.

Proof of Proposition 3. By Lemma 1, ϕ is symmetric about bs. Therefore, (4) reduces to

bs − (xi − ai − b) = (xi+1 − ai − b) − bs, (A.11)

which in turn reduces to (6), given that bs = wµs. In fact, (6) is precisely the set of conditions

listed as Eq. (9) and arbitrage conditions (A) in Crawford and Sobel (1982). They are obtained

by requiring a cutoff type ai to be indifferent between pooling with types in intervals [ai−1, ai]

and [ai, ai+1] and effectively characterize an equilibrium. In fact, (4) determine an equilibrium

of a CS-game of constant bias b∗ with any loss function of A that is symmetric around zero,

not just `a, and the loss function of P being `p. This completes the proof of Part 1.

To see Part 2, we begin by noting that the isomorphism between the equilibrium partitions

of such a CS-game of constant bias b∗ and the SITU game, the payoff of P in the corresponding

N-equilibrium is equal. Moreover, a CS-game of constant bias satisfies assumption (M) given

in Crawford and Sobel (1982) that leads to their Theorem 2. As a result, all their comparative

static results apply. In particular, P’s payoff is higher in the N-equilibrium than in the N− 1-

equilibrium.

To complete the proof, what remains to be shown is that A’s payoff in the SITU game also

increases in N. But, a careful examination of the steps leading to Theorem 5 of CS reveals

that the proof of that result can be carried forward ad verbatim after averaging out the residual

uncertainty in A’s payoff to conclude that A also prefers the equilibrium with a greater number

of steps. Q.E.D.

Proof of Proposition 5. Let B denote a random variable, initially distributed according to a

probability distribution function H. Now consider a change in its distribution to H ′ so that

it second order stochastically dominates H and the mean remains unchanged. An unchanged

mean implies

∫β
α

H(x)dx =

∫β
α

H ′(x)dx. (A.12)

21Repeat the proof arguments given on para 2, page 1438 onwards replacing their condition (A) with (A.9)
and their Eq. (10) with (A.10) above.
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Given that `a is convex, a direct application of the proof of Theorem 3′ of Hadar and Russell

(1969) together with the above equality immediately gives us

EH[`a(| x− B |)] > EH ′ [`a(| x− B |)]. (A.13)

Let a be the partition in the N-equilibrium of the SITU game and let xi := x (ai−1, ai).

Letting B = ws + b and H denote its probability distribution, ex-ante payoff of A in this

equilibrium is

πaN (a, H) = −

N∑
i=1

∫ai
ai−1

EH [`a (|xi − θ− B|)] dF(θ). (A.14)

If the distribution H is changed to H ′ in the manner described above, the effective bias

remains at wµs + b. From Proposition 5, a continues to be the equilibrium partition in the N-

equilibrium following the change. Consequently, the A’s payoff is now πaN (a, H ′) > πaN (a, H),

the inequality following from (A.13). P’s payoff remains unchanged as the effective bias has not

changed. Q.E.D.

Proof of Proposition 6. We have already discussed Part 1 following the statement. We turn to

proving Part 2.

First, note that when θ is uniform, xi = (ai−1 + ai) /2 and (6) reduces to

ai+1 = 2ai − ai−1 + 4 (b+wµs) . (A.15)

Coming to the SITU∗ game, this after all satisfies the assumptions of CS. Hence every equilib-

rium must involve a finite partition of Θ. The arbitrage condition facing a marginal type ai

is

ϕa
(
x ′i − ai − b

)
= ϕa

(
x ′i − ai − b

)
.

where

x ′i = argminξ Eθ [ϕp (ξ− θ) | [ai−1, ai]] .

Again, applying Lemma 1 to ϕa, the unique solution to ϕa (ξ) = ϕ (ξ ′) is |µs − ξ| = |µs − ξ
′|.
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Hence, above arbitrage condition reduces to

ai =
x ′i + x

′
i+1

2
+ b+waµs, (A.16)

just as in Proposition 3.

To calculate x ′i, write t = θ+wps where the distribution of θ is now uniform on [ai−1, ai].

Write

ϕ̂ (ξ) = E [`p (|ξ− t|)]

and note that x ′i = argminξ ϕ̂ (ξ). Noting that t is symmetrically distributed. Applying

Lemma 1, we have x ′i = E [t] = (ai−1 + ai) /2+ b+wpµt. Using this, (A.16) reduces to (A.15).

So the equilibrium partitions must be identical in both the games.

Pareto-superiority of an equilibrium of the SITU game with a corresponding equilibrium

of the SITU∗ game is a direct consequence of the facts that the outcome in the latter is a

mean-preserving spread of the former and `i is convex. Q.E.D.

Proof of Proposition 8. By Proposition 3, the payoff from retaining authority and playing the

SITU game is the same as P’s payoff in the CS-game with quadratic loss functions and bias

µb. In an N-equilibrium of the latter, the expected loss of P is simply the residual variance of

θ that P expects after hearing A’s report. That is, if ξ∗N : Θ −→ R denotes the equilibrium

outcome function of the CS-game, then P’s loss from retaining authority, as shown in Section

4 of CS with the bias b = µb, is

E [`p(ξN(θ))] =
1

12N2
+ µ2b

(N2 − 1)

3
.

On the other hand, if P delegates, A chooses the action θ+was in state (θ, s) leaving P with

an ex-post payoff of `p(bs). Given that `p is assumed to be quadratic, the loss from delegation

is µ2b +wσ
2
s. Retaining authority is therefore a superior choice whenever

µ2b +w
2σ2s >

1

12N2
+ µ2b

(N2 − 1)

3

⇔ w2σ2s >
1

12N2
+ µ2b(

(N2 − 4)

3
). (A.17)

Dividing both sides of (A.17) by w2 establishes Part 1. For Part 2, recall that CS show that
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the existence of an equilibrium which divides Θ into N sub-intervals requires that

N ≤ −
1

2
+
1

2
(1+

2

µb
)1/2 or equivalently, µb ≤

2

(2N+ 1)2 − 1
.

Therefore, the RHS of (A.17) is bounded above by

1

12N2
+ (

2

(2N+ 1)2 − 1
)2
(N2 − 4)

3
=

(2N2 + 2N− 3)

N2(N+ 1)2
σ2θ.

Hence, (10) implies (A.17) and Part 2 follows. Q.E.D.

Proof of Proposition 9. Let CS(b) denote a CS-game of fixed bias b and let πN(b) denote

P’s payoff in that game. Recalling our discussion following Proposition 3, in a SITU game

where Condition A holds, πN(µb) is P’s payoff. Thus, we will routinely appeal to the following

comparative statics developed in CS:

πN−1(µb)<πN(µb) whenever N ≤ N∗µb ; (CS1)

N∗µb ≤ N∗µ ′b whenever |µ ′b| < |µb|; (CS2)

πN(µb) < πN(µ
′
b) whenever |µ ′b| < |µb|. (CS3)

We will also need a result from Agastya, Bag, and Chakraborty (2013), Proposition A below.

Recall that the mesh of a partition a = (a0, a1, . . . , aN) is the length of its longest sub-interval,

denoted by ‖ a ‖.

Proposition A. Fix `p, `a and F and (bk) be such that limk→∞ bk = 0 and consider the

corresponding family of CS-games {CS(bk)}k. Then,

1. limk→∞N∗bk =∞.

2. Consider any infinite sequence of integers (Nk) such thatNk ≤ N∗µbk for all k andNk →∞.

Then, for the corresponding equilibrium partitions ak = (ak0 , a
k
1 , . . . , a

k
Nk

),

lim
k→∞ ‖ ak ‖= 0,

and lim
k→∞πNk(bk) = −`p(0).

To complete the proof of our proposition then, we apply (7) to see that the payoff from

delegation is at most −Kε. Let bε = sup
{
|b| : πN∗b(b) ≥ −Kε

}
. Note that bε is well-defined,

due to Proposition A. Define Nε = N∗bε + 1. For the existence of an N-equilibrium, where
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N ≥ Nε, we must have |µb| < |bε| and by construction then πN(µb) > −Kε, i.e., authority is

superior choice for P. Q.E.D.

Proof of Proposition 10. Let Bε denote an ε > 0 neighborhood of (0, 0). For any (b,w) ∈ Bε
such that w = 0 and b > 0, it is as if there is no residual uncertainty and the situation

is effectively as in Dessein (2002): Authority dominates delegation for all such (b,w), for ε

sufficiently small.

We will now show that the converse can happen in any such neighbourhood.

Choose any sequence (bN) such that limN→∞ bN = 0 and limN→∞NbN = K where |K| >

|µs/σs|. Set

wN = −
bN
µs

+
1

2µsN (N+ 1)
.

We claim that along the infinite sequence (bN, wN), P prefers authority to delegation for all but

finitely manyN. Because there are infinitely many such sequences, all with limN→∞ (bN, wN) −→
(0, 0), establishing this claim completes the proof.

As Condition A holds, along the above sequence, the effective bias is b∗N = bN + wNµs =

1
2N(N+1) , which is the critical value for the existence of an N-equilibrium. Therefore, it suffices

to verify (10), namely w2N ≥ λN, where

λN =
(2N2 + 2N− 3)

4σ2sN
2(N+ 1)2

(A.18)

holds for all N large enough. Note that limN→∞N2λN = 1
2σ2s

, whereas limN→∞N2w2N = K2/µ2s.

Because |K| > |µs/σs| by hypothesis, w2N ≥ λN for all N large enough. Q.E.D.
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Figure 1: P’s loss as µs varies, plotted for quadratic loss function and uniformly distributed θ
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