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Abstract

In a joint project involving two players of a two-round effort investment game with

complementary efforts, transparency, by allowing players to observe each other’s ef-

forts, achieves at least as much, and sometimes more, collective and individual efforts

relative to a non-transparent environment. Without transparency multiple equilibria

can arise and transparency eliminates the inferior equilibria. When full cooperation

arises only under transparency, it occurs gradually : no worker sinks in the maximum

amount of effort in the first round, preferring instead to smooth out contributions over

time. If the players’ efforts are substitutes, transparency makes no difference to equi-

librium efforts. JEL Classification: D02; J01. Key Words: Transparency, team,

complementarity, substitution, free-riding, weak dominance, neutrality, implementa-

tion costs.

1Acknowledgments: We are grateful to two anonymous referees for their extensive suggestions on earlier

drafts. The work (supported under the Singapore Ministry of Education Academic Research Fund Tier 1)

was previously presented at the PET conference in Istanbul, SAET conference in Singapore, ISI-Delhi 2010

annual conference, and in seminars at ANU, Monash, NUS, Sabanci, and Tobb-ETU. We thank the seminar

and conference participants, and especially Murali Agastya, Mehmet Bac, Qiang Fu, Jihong Lee, Jingfeng

Lu, and Eko Riyanto, for helpful comments and conversations. Remaining mistakes are ours.



1 Introduction

Joint projects in teams based on voluntary contributions of efforts are vulnerable to free-

riding. In formulating incentives, an organization may influence its members’ effort decisions

through careful design of the structure of contributions implying how much the members

know about each other’s efforts. This type of knowledge can be facilitated by an appropriate

work environment, such as an open space work-floor or regular reporting of actual working

hours. We aim to show how transparency in effort contributions within a team may (or may

not) help to mitigate shirking and foster cooperation. Empirical evidence certainly point

to the relevance of this kind of transparency as a key determinant of productive efficiency

(Teasley et al., 2002; Heywood and Jirjahn, 2004; Falk and Ichino, 2006).

When efforts are observable during a project’s live phase (i.e., in a transparent environ-

ment), team members play a repeated contribution game. On the other hand, when efforts

cannot be observed (i.e., a non-transparent environment), the project is a simultaneous move

game. The repeated contribution game expands the players’ strategy sets relative to a si-

multaneous move game because later period actions can be conditioned on the history. The

additional strategies can create new equilibria that are not available under the simultaneous

move game, or remove existing equilibria of the simultaneous move game by introducing

strategies that lead to profitable deviations. By enlarging or shrinking the equilibrium set or

by simply altering it, does observability of interim efforts induce more overall efforts or less

efforts? Which game form is better? With this being the focal point of our query, we will

explore the relationships between transparency, team production technology and incentives.

In teams, repeated games and dynamic public good settings, the general issue of trans-

parency (i.e., observability/disclosure of actions) and its incentive implications have been

studied by several authors. See Che and Yoo (2001), Lockwood and Thomas (2002), An-

dreoni and Samuelson (2006) etc. in the context of dynamic/repeated games, Mohnen et

al. (2008), and Winter (2010) in the context of repeated and sequential contribution team

projects, and Admati and Perry (1991), Marx and Matthews (2000) etc. in dynamic volun-
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tary contribution pure public good settings.1

Our paper is closer to the peer transparency problems of Mohnen et al. (2008) and Winter

(2010). Mohnen et al. consider a team of two workers exerting efforts over two rounds, with

the total output equaling the sum of efforts by the workers (i.e., the technology is one of

perfect substitutes). The workers are paid identical remunerations – a fixed wage plus bonus

– with the latter being a positive fraction of the team output. When the workers are averse

to inequality of efforts, allowing the contribution game to be transparent by making each

other’s first-round efforts observable improves the overall contribution and output relative

to when the workers cannot observe the first-round efforts. Further, if the workers’ utility

functions are modified by dropping the inequity aversion component, then transparency

makes no difference to the equilibrium efforts and output. Thus in their model the benefits

of transparency are realized largely due to the workers’ distaste for inequity.

In the context of a team project, Winter (2010) asks when more information among peers

about each other’s efforts (IIE or ‘internal information about effort’ measuring transparency)

1Some of the other works on strategic disclosure (or non-disclosure) of information about peers include:

workers’ ability differentiation through incentive/uniform wage contracts (Fang and Moscarini, 2005), out-

siders learning about experts’ ability through individual votes cast in committee decisions (Levy, 2007), how

cheap-talk undermines transparency of contributions in discrete public good games (Agastya, 2009), etc.

In a related paper (Bag and Pepito, 2011), we consider a team problem consisting of multiple tasks with

strong complementarities and where the team members assigned to different tasks make multiple attempts

to succeed. Our main concern there is whether the project manager should disclose interim outcomes of

tasks to motivate efforts. We show that commitment to disclose outcomes has countervailing implications:

a team member’s success encourages another to exert efforts, whereas failure dampens effort incentives.

There is also a parallel literature on tournaments (Lizzeri et al. (2003), Gershkov and Perry (2009),

Aoyagi (2010), etc.), where the focus is on interim performance evaluations (or feedbacks) to incentivize

player efforts. Transparency in teams is very different from feedbacks for two reasons: (i) because of the

public good nature of the players’ rewards, in contrast to tournaments where the reward is of the winner-

take-all variety; (ii) interim efforts do not directly translate into rewards whereas in tournaments rewards

are a function of interim performance.
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makes it easier for the principal to provide incentives so that all agents exert “effort” (called

the INI outcome).2 The agents can either exert effort or shirk as a one-off effort investment

decision, and each agent’s effort choice is made at different points of time although an agent

may or may not observe the past decisions by the earlier agents. With an acyclic binary order,

k, on the agents reflecting an IIE,3 if any two IIE s, say k1 and k2, can be compared in the

manner k1 is “richer” than k2,
4 then k1 is said to be more transparent than k2. Then, defining

a project to exhibit complementarity (substitution) if an agent’s effort is marginally more

(less) effective in improving the project’s probability of success as the set of other agents who

also exert effort expands, the paper makes several interesting observations: (i) if a project

satisfies complementarity, then it is less costly to induce INI the more transparent the IIE ;

(ii) a sequential architecture in which each agent observes his immediate predecessor’s effort

is the most transparent IIE ; and (iii) if the project exhibits substitution, transparency is no

longer important, i.e., neutral, in inducing INI ; etc.

We complement and extend the analysis of Mohnen et al. (2008) and Winter (2010), by

studying a team setting with some plausible and important model features not considered

by these authors. There is a project consisting of two tasks. Two workers work over two

rounds on one task each, and in each round a worker may choose to put in zero, one or

two units of effort with total efforts over two rounds not exceeding two units. The project

outcome materializes only at the end of the second round. The project’s success probability

is increasing in the total efforts invested in each task. The project exhibits complementarity

(substitutability) if the incremental success probability due to additional efforts in a task

2Winter (2006) analyzes the problem of incentive provision in a team where its members exert efforts

sequentially towards a joint project, whereas Winter (2004) studies another team problem where the agents

move simultaneously. On incentive design with complementarities across tasks but in a principal-agent

setting (rather than team setting), see MacDonald and Marx (2001).

3An ordering of peers in the form of i1 k i2 k...k ir indicates that peer i1 knows peer i2’s effort, i2 knows

i3’s effort, and so on.

4I.e., i k2 j would imply i k1 j but not necessarily the other way around.
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is increasing (decreasing) in the efforts invested in the other task. Each worker receives

a common reward v > 0 if the project is successful and receives zero otherwise; rewards

cannot be conditioned on efforts as the latter might not be verifiable. Two alternative work

environments are considered: in a transparent (or open-floor) environment first-round efforts

are publicly observed by each worker before each chooses respective second-round efforts; in

a non-transparent (or closed-door) environment efforts are not observed.

Among the modeling differences, ours consider more general technologies than the one

analyzed by Mohnen et al. (general complementary/substitution technologies vs. perfect

substitution technology) but the workers’ preferences are standard utilitarian without any

concern for equity. Different from Winter (2010), we allow for repeated efforts by the play-

ers (i.e., workers) and thus transparency in our setting not only allows a player to influ-

ence another player’s future play through his own action today but also by conveying his

likely actions/response the next round.5 This intertemporal coordination in players’ actions

through public observation of both players’ past actions demands more complicated strate-

gic considerations compared to the one-off effort investment decision model of Winter. So

the relationships between transparency, technologies and incentive provision need further

scrutiny.

We show the following results. Under complementary technology, with player rewards

exogenous, the transparent environment is weakly better than the non-transparent environ-

ment (Propositions 2 and 3) in the following sense: the best Nash equilibrium efforts pair

in the non-transparent environment entailing partial or full cooperation by the players can

be uniquely implemented in subgame-perfect equilibrium in the transparent environment,

by eliminating any other inferior Nash equilibrium; in addition, we show that when shirking

(i.e., (0, 0)) is the unique Nash equilibrium, under certain conditions the maximal efforts

equilibrium or some form of cooperation (i.e., (2, 2) or (2, 1)) can be achieved with trans-

5In Winter (2010), the structure of IIE rules out mutual knowledge of efforts as there is a fixed timing

structure according to which the agents make their investment decisions.

4



parency. Further, when full cooperation is induced only under observability of efforts, it

involves each worker putting in one unit of effort in the first round followed by another unit

of effort in the second round. Thus, full cooperation might be achieved at best gradually

– transparency allows workers to make observable partial commitments in the first round

and complete the project successfully by supplying the remaining efforts in the second round

(Proposition 2).6,7 Based on the weak-dominance result in Proposition 3 we further show

that when the principal determines the rewards optimally, compared to non-transparency

the principal can achieve weak or unique implementation of full cooperation at no more and

possibly lower overall costs in a transparent environment (Proposition 4). All these results

are derived assuming symmetric players, but it should also become clear that the related

intuitions are applicable more generally; see Proposition 5 and the discussion in section 3.5.

Finally, we show that if the technology exhibits substitutability in efforts and effort costs are

linear, transparency is neutral in terms of equilibrium efforts induced (Propositions 6 and

7).8

The weak-dominance property of transparency in our setup, while similar to the main

theoretical result of Mohnen et al., is due to different underlying reasons. First, as our results

show, the workers’ inequity aversion is not necessary for explaining why organizations may

favor transparency; in our setup the dominance (of transparency) obtains mainly due to the

complementary nature of the production technology.9 This enriches the possibilities under

6Besides a number of papers mentioned earlier, some of the other works on gradualism are Bagnoli and

Lipman (1989), Fershtman and Nitzan (1991), and Gale (2001).

7These results we obtain assuming effort costs are linear. For increasing marginal costs, both weak-

dominance and gradualism hold but the uniqueness of equilibrium involving partial or full cooperation may

not be guaranteed under transparency.

8Elsewhere Pepito (2010) has shown that for increasing marginal costs of effort, transparency is harmful.

9Knez and Simester (2001) and Gould and Winter (2009) document the positive impact of peer efforts

due to complementarity between team members’ roles – the former is a case study on the performance of

Continental Airlines in 1995, and the latter is a panel data analysis of the performance of baseball players.

Gould and Winter also show negative peer effect when the players are substitutes.
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which organizations may favor a transparent work arrangement beyond the environment

studied by Mohnen et al. The contrast between complementary and substitution technologies

with their differing implications (for transparency) is similar to Winter’s (2010) result. But

unlike in Winter’s paper the players in our setting receive identical rewards, so there is no

discrimination among team members (according to one’s position in the sequential efforts

chain).

Another point may be noted here. In a public good setting with perfect substitutability

in contributions, Varian (1994) made the observation that if agents contribute sequentially,

rather than simultaneously, the free-riding problem gets worse – total contribution in a se-

quential move game is never more and possibly less than in a simultaneous move game.10

As Winter (2010) has shown, if an external authority can give discriminatory rewards to the

contributors of a joint project, then even though such projects exhibit public good features,

sequential game performs better than a simultaneous move game when player efforts are

complementary. And we show that, in joint projects, the domination over the simultaneous

move format can be extended to the repeated contributions format. So unlike in the sequen-

tial move game of Varian, observability of contributions is distinctly a positive aspect for

complementary production technology.

The model is presented next. In sections 3 and 4, we derive our main results on trans-

parency. Section 5 concludes. Proofs of the main results are in Appendix A. A supplementary

materials section available online contains omitted proofs and additional results.

2 The Model

A team of two identical risk-neutral members, henceforth players, engage in a joint project

involving two tasks, with one player responsible for one task each. The probability of the

10Bag and Roy (2008) show that if agents contribute repeatedly to a public good and have incomplete in-

formation about each other’s valuations, expected total contribution may be higher relative to a simultaneous

contribution game.
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project’s success depends on the players’ aggregate effort profile over a horizon of two rounds.

In each round, players simultaneously decide on how much effort to put in. Denote

player i’s (i = 1, 2) sequence of effort choices by {eit}2t=1, and his overall effort ei1 + ei2 by

ei ∈ Ei = {0, 1, 2}. Let p(ei, ej) be the project’s success probability. The cost to player i of

performing his task is c per unit of effort, c > 0. If the project succeeds, both players receive

a common reward v > 0; otherwise, they receive nothing. The payoff to player i (= 1, 2),

given his overall effort ei and player j’s overall effort ej (j 6= i, j = 1, 2), is:

(1) ui(ei, ej) = p(ei, ej)v − cei.

The efforts are irreversible: shirking by player i (ei = 0) means {eit}2t=1 = {0, 0}, partial

cooperation by player i (ei = 1) means either {eit}2t=1 = {1, 0} or {eit}2t=1 = {0, 1}, and full

cooperation by player i (ei = 2) implies any of the following: {eit}2t=1 = {2, 0}, {eit}2t=1 =

{0, 2}, or {eit}2t=1 = {1, 1}. So a player can choose full cooperation either by making a single

contribution of two units of effort early or late in the game or by contributing gradually, one

unit of effort in each round.

The success probability function p(ei, ej) has the following properties:

A1. p(2, 2) = 1 and p(0, 0) > 0;

A2. Symmetry : p(ei, ej) = p(ej, ei); and

A3. Monotonicity : For given ej, p(ei, ej) is (strictly) increasing in ei.

The above three properties will be maintained throughout the paper. We specify a fourth

property to define complementary technology, our main focus in section 3:

A4. General Complementarity : For any ej ∈ {0, 1}, p(1, e′j) − p(0, e′j) > p(1, ej) − p(0, ej)

and p(2, e′j)− p(1, e′j) > p(2, ej)− p(1, ej), where e′j > ej.

So, while the project succeeds for certain if and only if both players exert the maximum

amount of effort, there is still some chance of success if players shirk or cooperate only
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partially. We have specified complementarity in a general form, requiring only that any ad-

ditional effort by player i is more effective (in terms of incremental probability of success) the

more cooperative player j is.11 This formulation admits perfectly complementary technology,

p(ei, ej) = p(ei)p(ej), where p(ei) and p(ej) are the individual tasks’ success probabilities.

Also note that symmetry and monotonicity are very natural and weak assumptions; further,

for complementary technology, we do not require any further curvature restriction on the

success probability function: p(., .) can be concave or convex in each effort component (i.e.,

incremental probability of success is decreasing or increasing).12

Finally, v can be interpreted in two ways – as the players’ valuation for the project, or

their compensation as set by a principal, with v being common knowledge. The principal

can condition the rewards only on the outcome and not directly on the efforts; in fact, the

principal need not necessarily observe the efforts. Since players are identical, v1 = v2 = v.

The paper’s main insights do not depend on the identical players assumption. Most of the

analysis will be carried out assuming v to be exogenous. Later on v will be solved to minimize

the principal’s costs of inducing full (or partial) cooperation.

We will consider two effort investment games. In one version, players are able to observe

first-round effort choices in an interim stage before making second-round effort decisions,

while in the other version players are unable to observe first-round actions. Observability of

efforts (or the lack of it) may be due to the principal designing a suitable work environment

or because of direct reporting. Following others studying similar environments, we term the

observable effort case transparent and the one with non-observable actions non-transparent.

Most of our analysis in this paper will be carried out under the assumptions of constant

per-unit cost of effort and symmetric players, as specified above. Towards the end of section

11The incremental gain (in probability of success) from own effort is assumed to be strictly increasing in

the other player’s effort, to eliminate equilibrium involving asymmetric efforts under non-transparency. A

similar assumption will be made for the substitution technology in section 4 for consistency in modeling.

12However, in section 4 with players’ efforts acting as perfect substitutes, the success probability function

will be strictly concave. See footnote 21.
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3 we address, separately, how changing to increasing marginal costs (of effort) might alter

the results and the case of non-identical players.

3 Benefit of Transparency: Complementary Efforts

3.1 Unobservable contributions.

In the non-transparent environment, the players’ overall efforts are determined by the Nash

equilibrium (or NE ) of the following simultaneous move game:

Player 1

Player 2
0 1 2

0 p(0, 0)v, p(0, 0)v p(0, 1)v, p(0, 1)v − c p(0, 2)v, p(0, 2)v − 2c
1 p(1, 0)v − c, p(1, 0)v p(1, 1)v − c, p(1, 1)v − c p(1, 2)v − c, p(1, 2)v − 2c
2 p(2, 0)v − 2c, p(2, 0)v p(2, 1)v − 2c, p(2, 1)v − c v − 2c, v − 2c

Figure 1: Simultaneous move game GN

Denote this one-shot game by GN , any pure strategy profile (e1, e2) of GN by eN , and any

pure strategy NE, (e∗1, e
∗
2) of GN , by e∗N . Also, denote the set of pure strategy NE of GN by

EN .

Lemma 1. With effort complementarities, the game GN has no asymmetric pure strategy

Nash equilibrium.

The intuition derives from the fact that a player’s marginal benefit from effort is increasing

in the other player’s effort. This means, if (1, 0) is an NE so that putting in one unit of

effort is (weakly) better than putting in zero effort for player 1, the same comparison holds

true strictly for player 2 given that player 1 puts in one unit of effort. Thus, player 2 should

like to deviate and (1, 0) cannot be an NE. The same intuition applies for other asymmetric

strategies.

In view of Lemma 1, in the one-shot game we focus on symmetric pure strategy equilib-

rium:

Proposition 1 (One-shot Nash equilibrium). Assume complementary technology. In

the one-shot game GN (i.e., with unobservable contributions), the pure strategy Nash equilib-

rium (or equilibria) can be characterized as follows:
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• (0, 0) ∈ EN if and only if

c ≥ max{(p(1, 0)− p(0, 0))v, [(p(2, 0)− p(0, 0))v]/2};

• (1, 1) ∈ EN if and only if

(p(2, 1)− p(1, 1))v ≤ c ≤ (p(1, 1)− p(0, 1))v;

• (2, 2) ∈ EN if and only if

c ≤ min{(1− p(1, 2))v, [(1− p(0, 2))v]/2}.

Note that the above is a characterization result. In supplementary materials we show

that there always exists a pure strategy Nash equilibrium. It follows therefore that there are

no “gaps”, and there may even be some overlaps in the equilibrium ranges of c (i.e., for given

p(·, ·) and v, certain values of c yield multiple equilibria).

3.2 Observable contributions.

The effort investment game proceeds as follows:

Round 1 : Players simultaneously choose their efforts ei1 ∈ Ei1 = {0, 1, 2}, i = 1, 2.

Interim period : Players’ first-round decisions are revealed. Denote the set of possible ob-

served effort levels e1 = (e11, e21) by H, so

H = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)} .

Round 2 : Players make their effort decisions simultaneously, having observed each other’s

first-round effort choices. Denote player i’s set of admissible second-round effort choices by

Ei2. Since overall effort ei cannot exceed 2,

(2) Ei2 =


{0,1,2} if ei1 = 0;

{0,1} if ei1 = 1;

{0} if ei1 = 2.

At the end of Round 2, the project concludes. Both players receive reward v if the project

is successful. If the project fails, they both receive 0. ||
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Figure 2: Extensive-form game GT



With observability, the joint project induces an imperfect information, repeated contri-

bution game in which players move simultaneously in each round. This belongs to a class of

games known as multi-stage games with observed actions, as in Fudenberg and Tirole (1991).

The extensive form, denoted by GT , appears in Figure 2.

The payoffs in each continuation game of GT are in terms of the second-round incremental

gains relative to those yielded by the pair of first-round observed effort levels, e1. For

example, suppose that both players choose one unit of effort in the first round. This restricts

the set of admissible actions for players 1 and 2 to E12 = E22 = {0, 1}, resulting in a

continuation game with the strategy space S2 = {0, 1}×{0, 1}. (In general, the strategy space

of any continuation game is S2 = E12 × E22.) Denote player i’s interim payoff, i.e., payoff

generated by observed effort levels e1 = (e11, e21), by ûi1(ei1, ej1),
13 and incremental gains

following second-round actions (ei2, ej2) by ûi2(ei2, ej2|e1) = ui(ei1+ei2, ej1+ej2)−ûi1(ei1, ej1).
Therefore, player i’s payoffs in the continuation game following e1 = (1, 1) are

ûi2(ei2, ej2|(1, 1)) =


0 if ei2 = 0, ej2 = 0;

(p(1, 2)− p(1, 1))v if ei2 = 0, ej2 = 1;

(p(2, 1)− p(1, 1))v − c if ei2 = 1, ej2 = 0;

(1− p(1, 1))v − c if ei2 = 1, ej2 = 1.

Payoffs for the other continuation games are computed in the same way.

One specific continuation game is worth noting here – the game following (0, 0) efforts

in the first round – which is same as the one-shot game GN except that all the payoffs are

subtracted by p(0, 0)v. For later use, we treat these two games to be identical, given that

the players’ strategic decisions will be the same.

Equilibrium of GT . Corresponding to GT , any pure strategy subgame-perfect equilibrium

(or SPE ) will be denoted by (e∗11, e
∗
21; e

∗
12(e

∗
11, e

∗
21), e

∗
22(e

∗
11, e

∗
21)), or in short, e∗T . To be precise,

equilibrium second-round strategies should be more general functions of any first-round effort

decisions and not just of (e∗11, e
∗
21). To establish a particular strategy profile as SPE, we will

verify the Nash equilibrium property both along the equilibrium path and also following

unilateral first-round deviations by either player (i.e., in the continuation games following

(e11, e
∗
21) and (e∗11, e21), where e11 6= e∗11 and e21 6= e∗21).

14 The verification of Nash equilibrium

13Interim payoffs are calculated assuming as if the players will exert no further effort in Round 2.

14We need to check a player’s deviation incentive only one at a time, rather than consecutive deviations
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following joint deviations in the first round will not be necessary unless the players’ strategies

for the particular subgames are explicitly described in the strategy profile. Note that not

specifying the continuation strategies in joint deviation subgames is not a serious omission

as one can always specify a profile of Nash equilibrium strategies (which always exist for our

games) appropriate for the subgame. ||
Corresponding to e∗T , the aggregate effort profile is (e∗11 + e∗12, e

∗
21 + e∗22). Denote the set

of equilibrium aggregate effort profiles of GT by ET .

Given the extensive-form representation in Figure 2, we now want to evaluate how the

overall equilibrium efforts will change when efforts are made transparent. In particular, take

an equilibrium (or equilibria) that arises in the one-shot game; from Proposition 1 we see that

this equilibrium (or equilibria) results if and only if certain conditions hold. Taking these

conditions as given, we then examine the setting with repeated, observable contributions, and

determine which overall efforts result (or do not result) in an SPE under these conditions.

Detailed characterization of the various equilibria under transparency and their comparison

with the equilibria under non-transparency appear in supplementary materials.

Below we present one special type of equilibrium under observability to show how trans-

parency can sometimes be critical to achieving full cooperation and ensuring the project’s

success.

Proposition 2 (Gradualism: necessary and sufficient conditions). Suppose a joint

project satisfies general complementarity.

[a] (i) If (2, 2) 6∈ EN , then the only way (2, 2) ∈ ET is through gradualism, i.e., (e∗11, e
∗
21; e

∗
12, e

∗
22) =

(1, 1; 1, 1).

(ii) (2, 2) ∈ ET \ EN only when EN = {(0, 0)}.

[b] Suppose EN = {(0, 0)}, which occurs if and only if

p(0, 0)v ≥ max{p(1, 0)v − c, p(2, 0)v − 2c},

p(1, 1)v − c < p(0, 1)v,

and v − 2c < max{p(0, 2)v, p(1, 2)v − c}.

in the first and the second round, due to the ‘one-stage deviation principle for finite-horizon games’ of

Fudenberg and Tirole (1991) (see their Theorem 4.1).

13



Then (2, 2) ∈ ET (through gradualism) if and only if

(3)


v − 2c ≥ p(1, 2)v − c,

p(0, 1)v − c ≥ p(0, 2)v − 2c, and

v − 2c ≥ p(0, 1)v.

[c] Finally, if EN = {(0, 0)} and (3) hold, then (0, 0) ∈ ET .

Gradual cooperation requires that each player finds it optimal to make the remaining

contribution in the second round if both have already made partial contributions in the first

round (the first condition in (3)). It also entails that no player has an incentive to deviate

from this sequence of partial contributions (the second and third conditions in (3)).

The first condition in (3) and the uniqueness of e∗N = (0, 0) imply that p(0, 2)v > v− 2c,

which together with the third condition in (3) above yield p(0, 2)v > v − 2c > p(0, 0)v.

In other words, full cooperation Pareto-dominates shirking, though the latter prevails when

there is no way to observe the ongoing contributions. There is mutual interest in cooperating,

but it is not in any player’s individual interest to cooperate. In this setting, making efforts

observable encourages full cooperation. However, since efforts are irreversible, sinking two

units of effort in the first round is risky, as the other player can exert zero effort in both

rounds, get p(0, 0)v > v − 2c, and go unpunished. (The only way to punish him would

be for the cooperating player to move back to shirking, which is not possible.) Therefore,

while transparency induces cooperation, it can only do so using partial commitments, i.e.,

gradually. The result is similar to the gradualism result of Lockwood and Thomas (2002).

Earlier an empirical literature (Ichino and Maggi, 2000; Mas and Moretti, 2009) had pointed

out the role of reciprocity in organizations, attributing it to behavioral effects. Our result

shows that reciprocity can be explained on grounds of pure rationality and selfishness.

Thus gradualism is one way for transparency to make a difference when, without it, only

the worst (i.e., shirking) would have realized. This may lead to a distinct cost advantage for

a principal who wants to design reward incentives to uniquely implement full cooperation,

as we will see in Proposition 4. Proposition 2 also prompts the question whether a similar

domination could be achieved but without realizing full cooperation. In supplementary

materials we verify that indeed this is possible, sometimes by achieving overall equilibrium

efforts of (2, 1) in the transparent environment while (0, 0) is the only equilibrium under

14



non-transparency.15
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Figure 3: (0, 0) unique e∗N , and (2, 2) supported in SPE

Example. We now construct an example to illustrate Proposition 2, where full cooperation

is induced only under transparency. Figure 3 is derived using perfectly complementary

technology, p(e1, e2) = p(e1)p(e2), where for i = 1, 2,

p(ei) =


α if ei = 0;

β if ei = 1;

1 if ei = 2.

Given this specification, p(0, 2) = α, p(1, 2) = β, p(0, 1) = αβ, and p(1, 1) = β2. The

figure plots the payoffs against β and identifies the values of β such that the payoffs satisfy

conditions (3) for a profile of the remaining parameters, (α = 1
5
, v = 2.4, c = 1).16 Further,

e∗N = (0, 0) since for all β ∈ (0, 1), α2v > 0, αβv− c < 0, and αv− 2c < 0 (i.e., p(0, 0)v > 0,

15When (2, 1) obtains, it is more likely that (0, 0) will be eliminated which is a strict improvement, in

contrast to the case of weak improvement when (2, 2) occurs along with (0, 0) (Proposition 2[c]).

16The figure has been generated in Mathematica.
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p(1, 0)v − c < 0, and p(2, 0)v − 2c < 0). To verify uniqueness of e∗N = (0, 0), first note that

(1, 1) is not an NE since p(0, 1)v > p(1, 1)v − c (because αv > β2v − c), and (2, 2) is not

an NE because p(0, 2)v > v − 2c (follows from (3)), and there is no other pure strategy

equilibrium (by Lemma 1).

Let us now denote the value of β at which v − 2c = βv − c by β1. In this example,

β1 = 7
12

, and we see that, for the given parameter values of (α, v, c), all the conditions (i.e.,

(3) as well as uniqueness of e∗N = (0, 0)) are simultaneously satisfied for β ∈
(
1
5
, 7
12

]
. �

Next we develop the other main results on the performance of transparency vis-à-vis non-

transparency for implementation of better effort profiles and the related optimal incentive

costs. We begin with the claim that by allowing players to observe each other’s efforts

during the project’s active phase, the principal would do no worse and possibly do better.

For example, if full cooperation is an equilibrium in the one-shot game but not necessarily

unique, then full cooperation must be the only equilibrium in the extensive-form game.

Define the set of outcomes inferior to eN = (e1, e2) by

IeN = {(ẽ1, ẽ2) | ẽ1 < e1 or ẽ2 < e2} .

Note that by this definition, (2, 0) and (0, 2) are inferior to the effort pair (1, 1).

We look at two cases: when partial cooperation is a one-shot equilibrium, and when full

cooperation is a one-shot equilibrium.

Lemma 2. Suppose that (1, 1) ∈ EN . Then under transparency overall efforts that entail

shirking by any player cannot arise in an SPE.

Lemma 3. Suppose that (2, 2) ∈ EN . Then under transparency overall efforts where any

player exerts less than two units of effort cannot arise in an SPE.

Thus, making efforts observable eliminates all outcomes inferior to the ‘best’ one-shot

equilibrium possible where ‘best’ is interpreted in terms of total team efforts.17 But still

elimination does not establish superiority of transparency. We must show that the best

one-shot equilibrium, or perhaps a better effort profile, can be supported as a pure strategy

SPE of the extensive-form game under transparency. The following proposition achieves this

objective.

17This will also yield the highest chance of the project’s success given that the one-shot game induces only

symmetric NE.
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Proposition 3 (Beneficial Transparency). Suppose a joint project involves two comple-

mentary tasks. Then transparency dominates over non-transparency in the following sense:

Equilibrium (or equilibria) in the non-transparent environment entailing partial or full

cooperation by both players is weakly improved upon in a unique equilibrium in the trans-

parent environment by retaining the best equilibrium and at the same time by eliminating

all inferior effort profiles (i.e., ones in which at least one player exerts lower effort).

Moreover, under appropriate conditions, when shirking (i.e., (0, 0)) is a unique equilib-

rium under non-transparency, with transparency it is possible to achieve full cooperation by

both players but not partial cooperation.

Thus, when there are multiple one-shot equilibria, the weak dominance of transparency

is achieved through (i) preservation of the best one-shot equilibrium and (ii) the elimination

of all potential inferior outcomes (including inferior one-shot equilibria). When the one-shot

equilibrium is unique and involves cooperation (partial or full), overall equilibrium efforts

under transparency coincide with the efforts under non-transparency. Finally, when shirking

is the unique one-shot equilibrium, transparency improves upon non-transparency by making

full cooperation possible (under certain conditions) through partial commitments.

As already mentioned in the Introduction, relative to non-transparency the expanded

strategies under transparency has the potential to result in additional equilibria and equally

it could eliminate some one-shot equilibrium. Proposition 3 confirms both these predictions

to be true but what is interesting is the uniform impact of the two effects to make trans-

parency superior in terms of effort incentives (not only inferior outcomes are eliminated,

strictly superior outcome may emerge). For an intuition note that with complementary

efforts whenever there are multiple equilibria in the one-shot game, the equilibria can be

strictly Pareto-ranked from the players’ point of view with the equilibrium involving highest

symmetric efforts dominating the lower symmetric efforts equilibrium (or equilibria). This

allows a player to be unilaterally aggressive to play his ‘best’ one-shot equilibrium effort in

the first round under observability. The unique best response of the other player, then, is to

choose aggregate efforts over two rounds to correspond to his best one-shot NE. Thus, any

player, through an aggressive play, can eliminate all inferior effort pairs (not just inferior

NE ) from being supported in SPE. By a similar logic, due to complementarity observability

(of efforts) can generate strictly higher efforts than is possible under non-observability. Later

on we will see that if, instead, the efforts are substitutes, transparency is either neutral or

17



sometimes may even be harmful.

Another aspect worth emphasizing is that, while equilibrium selection using the criterion

of Pareto domination may seem a valid reason not to worry about the inferior equilibria (in

the case of multiple equilibria under non-transparency), the problem of miscoordination in

team settings is a very reasonable concern which gets worse as the team size becomes large.

And with the introduction of slight risk aversion on the part of the players (in our treatment

players are risk neutral in monetary rewards), non-transparency is likely to tilt the balance

towards lower efforts equilibria. Transparency fully resolves this coordination problem by

eliminating the inferior equilibria.18

3.3 The case of increasing marginal costs.

So far our analysis has been based on the assumption of linear effort costs. We now briefly

discuss possible modification to the main result if effort costs are convex: the cost of exerting

the second unit of effort within the same round is c+δ, δ > 0, i.e., the marginal cost of effort

is increasing within a round.

With the change in effort costs, our previous intuition in favor of transparency gets some-

what weakened. After all, due to increasing marginal costs players are strongly discouraged

against sinking in two units of effort within a single round. This gives fewer options to con-

tribute two units of effort in both the transparent and the non-transparent environments,

as the players should like to space out their effort contributions over the two rounds. In

the non-transparent environment this lack of options is of no real consequence, because the

players can shift their contributions across the two rounds privately. But in the transpar-

ent environment, this creates a perverse incentive among the players to withhold individual

contributions in the first round, thereby credibly conveying to the other player that pushing

up contribution in a later round would be unlikely (this effect is the principal reason why

transparency is potentially harmful in the substitution technology case). So players may

well end up in a bad coordination under transparency with reduced first-round efforts and

18For example, in the case where e∗N = (0, 0), e∗N = (1, 1), and e∗N 6= (2, 2), transparency allows any player

to confidently sink in one unit of effort early on regardless of whether the other player chooses zero effort or

one, because when the other player observes his move it will be in his best interest to match it (if he has not

already done so). Since this decision by any player will always be matched by the other player, a situation

where one player partially cooperates and the other player shirks cannot arise with observability.
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lower aggregate efforts. We show that, in our three efforts setup, such harmful effect never

arises and transparency continues to be (weakly) better than non-transparency. The main

difference, compared to the linear effort costs case, is that we can no longer guarantee the

uniqueness of the overall equilibrium efforts in the extensive-form game. The formal analysis

is developed in the supplementary materials section.

3.4 Optimal rewards.

So far we did not consider the question of optimal incentives: what should be the minimal

rewards to induce a particular pair of aggregate efforts, with and without transparency? Does

transparency lower the cost of incentives to the principal? One can well infer the answer

from Proposition 3. Suppose that, given p(·, ·) and c, the principal wishes to set rewards

such that full cooperation is the unique equilibrium with non-transparency. To minimize

cost, he chooses the minimum of the set of feasible v values for which this is possible.

But Proposition 3 implies that this minimum reward, as well as all feasible values for v

that implement full cooperation as only one of multiple equilibria under non-transparency,

induces full cooperation as the unique equilibrium under transparency. In other words,

transparency expands the feasible range of v values for the principal: this may bring down

the principal’s optimal cost, and can never increase it.19

We verify the above claim using formal derivations (available online) that provide, given

a complete breakdown of the cost parameter c in an ascending order (for any given value of

v and the project technology p(e1, e2)), the list of various equilibria under the two arrange-

ments, non-transparency and transparency. Based on this formal verification, we can make

the following general observation:

Proposition 4 (Implementation costs). Consider the same joint project characterized

by general complementarity, as in Proposition 3. Then full cooperation by both players,

i.e., overall efforts (2, 2), can be uniquely (or weakly) implemented under transparency

for a reward that is no more and possibly less than the minimal reward needed for unique

(respectively, weak) implementation under non-transparency.

A result similar to Proposition 4 can be stated also for implementation of partial cooper-

ation. Whether the principal targets full cooperation or partial cooperation should depend,

19The same assertion can be made also for ‘weak’ implementation.
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of course, on the available budget.

3.5 Non-identical players.

While our analysis in this paper is carried out for identical players, we will argue that the

main economic intuitions should apply more generally. Consider non-identical players – they

may differ either in terms of the impact of their efforts on the project’s success probability

(i.e., p(·, ·) is not necessarily symmetric so that A2 does not hold) or in effort costs (c1

may differ from c2, as opposed to c1 = c2 = c) or both. We will, however, retain the

other assumptions, A1, A3 and A4.20 Also, we consider only the case of identical rewards,

v1 = v2 = v; qualitatively, the treatment of differential rewards follows similar reasoning.

Our claim is that the main reason why transparency dominates non-transparency is be-

cause the Nash equilibria in the one-shot game can be Pareto ranked, due to complementarity

of players’ efforts. Roughly, compared to one NE if another NE involves higher efforts by at

least one player and which leads to a higher chance of project success (and so preferred by

the authority) while also improving the players’ net payoffs, the players should like to play

the second equilibrium and move away from the first under transparency: the player who

strictly gains can take the initiative by putting in the corresponding amount of (possibly

higher) efforts in the first round that is observed by the other player who, in turn, would

reciprocate as there is nothing to lose if not gain.

The above intuition tells us why with multiple Nash equilibria in the one-shot game, the

inferior equilibria should not arise under transparency. On the other hand, the intuition

for gradualism in Proposition 2 does not depend on player symmetry. So combined with

the Pareto ranking property, the weak dominance of transparency under complementary

technology should continue to hold in the heterogeneous players case. Below we formally

present the Pareto-ranking result:

Proposition 5 (Pareto ranking of Nash equilibria: non-identical players). Consider

a joint project characterized by general complementarity except that now the players are

heterogeneous either in terms of the impact of their efforts on success probability or in effort

costs (or both). Then, whenever, under non-transparency, there are multiple Nash equilibria

yielding different overall chances of success, the equilibria can be (weakly) Pareto ranked,

20The analysis in the next section should also generalize, although we do not verify this.
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with the players preferring the equilibrium with a higher success probability.

4 Substitution Technology: A Neutrality Result

In this section, we consider team projects with player efforts primarily as substitutes. The

main objective is to see how the change from complementary to substitution technology

impacts on the effect of transparency on team members’ efforts.

To formalize, let the project’s success probability inherit properties A1-A3 from the

previous section and satisfy the following property:

A4′. General Substitutability : For any ej ∈ {0, 1}, p(1, e′j)− p(0, e′j) < p(1, ej)− p(0, ej) and

p(2, e′j)− p(1, e′j) < p(2, ej)− p(1, ej), where e′j > ej.

That is, the incremental probability of project success due to an extra unit of effort by a

player is decreasing in the other player’s effort.21 We continue to assume linear effort costs.

At the end we discuss the likely changes in results if one assumes increasing marginal costs.

4.1 Unobservable contributions.

Denote the one-shot simultaneous move game representing the effort contributions over two

rounds without observability by ΓN ; note that it takes the same form as Figure 1. The NE

of this game will be denoted by e∗N . There always exists a pure strategy NE in ΓN (proof

available online). In Appendix A we also establish the following result:

Lemma 4. In the normal-form game ΓN , multiple symmetric pure strategy Nash equilibria

cannot arise. That is, any e∗N = (e, e) must be a unique equilibrium.

The intuition relies on a player’s marginal benefit from effort being decreasing in the

other player’s effort. This means, if (1, 1) is an NE so that putting in one unit of effort is

(weakly) better than putting in zero effort for a player, this comparison holds true strictly

if the other player puts in zero effort. Hence (0, 0) cannot be an NE. The same intuition

applies negating (1, 1) and (2, 2) being both NE.

21It is easy to check that in the perfect substitution case, p(e1, e2) = p(e1+e2), the general substitutability

property implies p(1)− p(0) > p(2)− p(1) > p(3)− p(2) > p(4)− p(3) > 0, i.e., p(e1, e2) is strictly concave

separately in each player’s effort.
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Note that while for complementary technology one-shot equilibrium is necessarily sym-

metric, for substitution technology one-shot equilibrium can be asymmetric. Moreover, an

asymmetric equilibrium can arise along with a symmetric one-shot equilibrium.22

4.2 Observable contributions.

When first-round efforts are observable, the extensive form is as in Figure 2. Denote the

extensive-form game under substitution technology by ΓT , any (pure strategy) SPE of this

game by e∗T , and the continuation game following e1 = (e11, e21) by ΓT |(e11,e21).
With player efforts as substitutes (rather than complements), free-riding becomes a more

serious problem under either contribution format, with and without transparency, because

one player’s slack can be more easily picked up by another player. But then a player cannot

easily free ride by simply putting in low effort in the first round because this effort reduction

can be made up for by the same player by putting in more effort in the second round, given

linear costs of effort. So how substitutability in efforts affects the players’ overall effort

incentives under the two formats is not a priori clear.

Our next result shows that unlike in the complementary technology case, when efforts are

substitutes, transparency cannot eliminate inferior efforts equilibrium if there are multiple

equilibria under non-transparency.

Proposition 6. Suppose a joint project satisfies general effort substitutability. Any NE

efforts pair (e∗1, e
∗
2) under non-transparency can be supported as an SPE of the effort contri-

bution game under transparency, with the strategy profile eT = (e∗1, e
∗
2; 0, 0).

The next result shows that any overall effort profile achievable under transparency can

also be replicated in the one-shot game under non-transparency:

Proposition 7. Suppose a joint project satisfies general effort substitutability. If under

transparency eT = (e∗11, e
∗
21; e

∗
12(e

∗
11, e

∗
21), e

∗
22(e

∗
11, e

∗
21)) is an SPE, then the aggregate efforts

pair eN = (e∗1, e
∗
2), where e∗1 = e∗11 +e∗12 and e∗2 = e∗21 +e∗22, is an NE of the effort contribution

game under non-transparency.

22For example, suppose that v− 2c > p(1, 2)v− c and v− 2c = p(0, 2)v, such that e∗N = (2, 2). By Lemma

4, we know that e∗N 6= (1, 1) and e∗N 6= (0, 0). However, v − 2c > p(1, 2)v − c and v − 2c = p(0, 2)v imply

that, using A4′ and A2, p(0, 2)v− 2c > p(2, 1)v− c and p(0, 2)v− 2c > p(0, 0)v. Together with the fact that

v − 2c = p(0, 2)v, these conditions imply that e∗N = (0, 2).
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Thus, Propositions 6 and 7 together establish, in contrast to our findings in section 3, a

form of ‘neutrality of transparency’ when player efforts are substitutes and effort costs are

linear: effort observability is neither gainful nor harmful for inducing efforts. The result fur-

ther implies that if one were to explicitly design incentives to implement full cooperation (or

partial cooperation), the optimal reward, v, will be identical with and without transparency.

To understand the intuitions behind the neutrality result, one must ask in what ways

can observability of efforts make a difference. On the positive side, first observability could

allow players, through gradualism, to coordinate on full cooperation (Proposition 2), but this

advantage disappears with effort substitutability because more effort by one player decreases

the incremental benefit from extra effort by the other player. (That is, complementarity in

efforts is necessary for the special advantage of gradualism.) Second, while observability

enables a player to put in high early efforts unilaterally and eliminate any Pareto-inferior

equilibrium in the complementary technology case, with substitution high early efforts by

one player does not improve incremental benefits from others’ efforts, so there is no added

incentive to reciprocate. This denies transparency any edge over non-transparency in terms

of effort inducement. On the negative side, effort observability would normally allow a player,

moving early, to commit to a low contribution so that others moving late must shore up their

contributions, a threat especially meaningful under effort substitutability. But this threat

loses its bite when the same player who contributed low early can make it up later on – again

transparency makes no difference.

Related to the last point above, in a sequential voluntary contribution public good game

Varian (1994) showed that total contribution under observability of contributions is often

less than (and never exceeds) the total contribution under non-observability. In our setup,

the fact that in the last round both players get to move a second time, combined with the fact

that marginal cost of effort is constant, completely nullify the extra free-riding opportunity

associated with an early move and observability makes no difference. But if marginal cost of

effort is increasing, low contribution in the early round will have a commitment value similar

to Varian’s setup because to make it up in the second round will push up the player’s effort

costs at an increasing rate, making observability of efforts harmful (from the organization’s

point of view).23 This result is demonstrated in Pepito (2010) in a continuous efforts formu-

23A similar contrast can be found between the dynamic contribution game of Admati and Perry (1991),

which assumes sequential contributions, and the repeated contribution game of Marx and Matthews (2000),
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lation of a two-player, two-round repeated efforts joint project game, assuming the players’

efforts are substitutes.

Also as we discussed in the Introduction, our neutrality property of transparency is

similar to Winter (2010)’s result. The important difference between Winter’s setup and ours

is that a player in our model may choose non-zero efforts over multiple rounds giving rise to

repeated efforts contribution game, whereas in Winter’s analysis a player gets to exert effort

(or shirk) only once so that the effort investment game is mostly sequential in nature (late

movers observe the early movers’ efforts and not the other way around).24

5 Conclusion

Transparency is an important subject of debate in public economics and its applications in

team settings. Samuelsonian formulation of public goods, in a majority of models, takes

substitutability of contributions in public good’s production as a starting point, with the

free-rider problem as the main challenge. Team productions in organizations, on the other

hand, may exhibit a large degree of complementarity, while the benefits of team performance

are similar to a public good.

To see how the paper adds to the literature on transparency, in Table 1 we present a

summary of the main features and results of our model and three related papers. Our model

has the following attributes: joint (or team) project, repeated contribution of efforts, self-

interested utilitarian contributors (whose preferences we describe as “standard preferences”),

complete information, and the two types of production technologies – complementary and

substitutes.

Of the papers listed in Table 1, Varian (1994) is in pure public good setting. Winter’s

(2010) is in a team setting (similar to ours) analyzing the architecture of information (i.e.,

how different peers are positioned in the observability-of-efforts chain) and its implications

for what should be the right kind of team (function-based or process-based) from the opti-

mal design viewpoint. Except Mohnen et al. (2008), all the papers listed assume standard

utilitarian agents; Mohnen et al. consider the implications when agents view an inequitable

which assumes simultaneous contributions within each round.

24In Winter’s setup, in some of the stages more than one worker may move (simultaneously) in which case

they do not observe each other’s efforts, but the late movers do observe the early movers’ efforts.
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Table 1: Alternative related models of transparency

This paper Mohnen et al. Winter[2010] Varian

complete info. complete complete/ complete

incomplete

effort effort effort public

contr. contr. contr. good
repeat repeat mainly sequential

contr. contr. sequential;

simult. in some

stages

standard inequity standard standard

preferences aversion# preferences preferences

complementary tech.; substitution; complementary; substitution;

transparency adv. transparency adv. transparency adv. transparency disadv.

substitution tech.; #change to substitution;

transparency std. pref. transparency –

neutrala ⇒ transparency neutral

neutral

a True for linear costs; for convex costs, transparency harmful (Pepito, 2010)

distribution of the burden of contribution with extra aversion beyond the direct utility-of-

rewards calculations.
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A Appendix

Proof of Lemma 1. Suppose without loss of generality e∗N = (e∗1, e
∗
2), where e∗1 > e∗2. Let

e∗1 − e∗2 = 4e ∈ {1, 2}. Then it must be that

p(e∗1, e
∗
2)− ce∗1 ≥ p(e∗1 −4e, e∗2)− c[e∗1 −4e](A.1)

and p(e∗2, e
∗
1)− ce∗2 ≥ p(e∗2 +4e, e∗1)− c[e∗2 +4e].(A.2)

From (A.1) we see that p(e∗1, e
∗
2 +4e)− ce∗1 > p(e∗1−4e, e∗2 +4e)− c[e∗1−4e], by A4. But

this implies that p(e∗2 +4e, e∗1)− c[e∗2 +4e] > p(e∗2, e
∗
1)− ce∗2, contradicting (A.2). �

Proof of Proposition 1. Equilibrium (e∗1, e
∗
2) = (0, 0) occurs if and only if p(0, 0)v ≥

p(1, 0)v − c and p(0, 0)v ≥ p(2, 0)v − 2c, i.e., c ≥ max{(p(1, 0) − p(0, 0))v, [(p(2, 0) −
p(0, 0))v]/2}, which is satisfied for high c values. Equilibrium (e∗1, e

∗
2) = (1, 1) occurs if

and only if p(1, 1)v − c ≥ p(0, 1)v and p(1, 1)v − c ≥ p(2, 1)v − 2c, i.e., (p(2, 1)− p(1, 1))v ≤
c ≤ (p(1, 1) − p(0, 1))v. Finally, equilibrium (e∗1, e

∗
2) = (2, 2) occurs if and only if v − 2c ≥

p(1, 2)v − c and v − 2c ≥ p(0, 2)v, i.e., c ≤ min{(1 − p(1, 2))v, [(1 − p(0, 2))v]/2}, which is

clearly satisfied for low values of c. �

Proof of Proposition 2. [a](i) First we claim that full cooperation cannot be achieved

in the extensive-form game through (0, 0; 2, 2) or (2, 2; 0, 0). The first case implies that (2, 2)

is an NE in the continuation game following e1 = (0, 0), contradicting our hypothesis that

(2, 2) 6= e∗N (recall, the continuation game following e1 = (0, 0) is simply GN). The second

case cannot be supported in equilibrium as any player i would have an incentive to deviate

from ei1 = 2 to either ei1 = 1 or ei1 = 0, because full cooperation is not an equilibrium in the

one-shot game: in the extensive form i can deviate the same way as he would have done in

the one-shot game, first by deviating in the first round (as in the one-shot game) and then

putting in zero effort in the second round.

Next consider full cooperation of the form (2, 1; 0, 1) or (1, 2; 1, 0) and each player col-

lecting a payoff of v − 2c overall. Since (2, 2) 6= e∗N , at least one of the following must hold

(see Figure 1):

p(0, 2)v > v − 2c,(A.3)

p(1, 2)v − c > v − 2c.(A.4)

But then the player who is considering to cooperate gradually in the extensive-form game

(say, player 1) can either shirk in both rounds and obtain an overall payoff p(0, 2)v that
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exceeds v − 2c, or partially cooperate in the first round and shirk in the second round to

receive p(1, 2)v − c that exceeds v − 2c; one of these profitable deviations must be possible,

by (A.3) and (A.4). Thus, neither (2, 1; 0, 1) nor (1, 2; 1, 0) can be sustained as SPE.

Then consider (0, 1; 2, 1) (or similarly (1, 0; 1, 2)) as an equilibrium possibility. It is easy

to see that there is a profitable deviation for player 1 in the second round, given that one of

(A.3) and (A.4) must be true.

The above eliminations leave us with gradual cooperation, i.e. (1, 1; 1, 1), as the only

equilibrium possibility.

(ii) In the extensive form, (e∗12(1, 1), e∗22(1, 1)) = (1, 1) if and only if (1− p(1, 1))v − c ≥
(p(1, 2)− p(1, 1))v (see Figure 2), i.e.,

v − 2c ≥ p(1, 2)v − c.

Further, since (2, 2) 6= e∗N , (A.3) must apply given that v − 2c ≥ p(1, 2)v − c. Condition

(A.3) and v − 2c ≥ p(1, 2)v − c (an implication of gradualism) imply that

(p(1, 2)− p(0, 2))v < c,

or that (p(1, 1)− p(0, 1)) < c, by A4. Therefore, e∗N 6= (1, 1), by Proposition 1.

[b] Refer to Figure 1. Clearly, e∗N = (0, 0) is unique if and only if

p(0, 0)v ≥ max{p(1, 0)v − c, p(2, 0)v − 2c},(A.5)

p(1, 1)v − c < max{p(0, 1)v, p(2, 1)v − 2c},(A.6)

and v − 2c < max{p(0, 2)v, p(1, 2)v − c}.(A.7)

Note that for (A.6) and (A.7) to hold simultaneously, it must be that

max{p(0, 1)v, p(2, 1)v − 2c} = p(0, 1)v.

Suppose not, so that max{p(0, 1)v, p(2, 1)v−2c} = p(2, 1)v−2c. Then this condition together

with (A.6) would imply that p(1, 1)v− c < p(2, 1)v− 2c and p(0, 1)v < p(2, 1)v− 2c, or that

(using A4) c < [1 − p(1, 2)]v and c < [1−p(0,2)]v
2

, respectively. But by Proposition 1 these

conditions imply that e∗N = (2, 2), a contradiction. Therefore, e∗N = (0, 0) is unique if and

only if conditions (A.5), (A.7), and

(A.8) p(1, 1)v − c < max{p(0, 1)v, p(2, 1)v − 2c} = p(0, 1)v
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hold.

[Sufficiency proof.] We claim that if (3) holds, then e∗T = (1, 1; 1, 1), i.e.,

• (e∗i2(1, 1), e∗j2(1, 1)) = (1, 1); and

• there is no profitable unilateral deviation for any player in Round 1 from e1 = (1, 1).

We are going to show that the following strategies will form an SPE :

1. In the first round, e∗i1 = 1 for each player i, and

2. In the second round, for i = 1, 2,

(A.9) e∗i2 =


0 if e1 = (ẽi1, ẽj1) and ẽi1 6= 1 ;

0 if e1 = (1, 0) ;

1 if e1 = (1, ẽj1) and ẽj1 > 0.

By the first condition in (3), (1 − p(1, 1))v − c ≥ (p(1, 2) − p(1, 1))v, hence

(e∗i2(1, 1), e∗j2(1, 1)) = (1, 1). Now we show that there is no profitable unilateral deviation

in Round 1.

The strategy profile in the posited equilibrium, (1, 1; 1, 1), yields a payoff to player 1 of

u1(1, 1; 1, 1) = v − 2c. Suppose he lowers his first-round contribution to e11 = 0. Then in

the continuation game, (A.9) recommends (e12, e22) = (0, 0). To verify that it is an NE, first

note that choosing e22 = 0 is player 2’s best response to e12 = 0 by the second condition in

(3). Also, note that if (A.7) and the first condition in (3) simultaneously apply, it must be

that

(A.10) p(0, 2)v > v − 2c and p(0, 2)v > p(1, 2)v − c,

which in turn implies, by A4, that

(A.11) p(0, 1)v > p(2, 1)v − 2c and p(0, 1)v > p(1, 1)v − c.

By (A.11), player 1 choosing e12 = 0 is a best response to e22 = 0, verifying NE. Now, by the

third condition in (3), u1(0, 1; 0, 0) = p(0, 1)v ≤ v − 2c = u1(1, 1; 1, 1), so player 1 will not

find the deviation in the first round profitable (and, by symmetry, the same is true of player

2). Finally, suppose player 1 increases his contribution to e11 = 2. Then the first condition

in (3) implies that e22 = 1, as recommended in (A.9), is a best response by player 2. Player

1’s deviation thus results in the payoff u1(2, 1; 0, 1) = v − 2c = u1(1, 1; 1, 1), which is clearly

not profitable. Similarly, player 2 will not deviate in Round 1.
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Finally we show that (A.9) corresponds to NE following joint deviations, i.e., in the

subgames following e1 = (0, 0), e1 = (2, 0), e1 = (0, 2), and e1 = (2, 2). Suppose players

lower first-round contributions to ei1 = 0, i = 1, 2. Note that the resulting continuation

game is identical to the one-shot game GN and that e∗N = (0, 0); therefore e12 = 0 and

e22 = 0, as recommended by (A.9), form an NE. Next, suppose that player 1 raises his first-

round contribution to e11 = 2 while player 2 lowers his contribution to e21 = 0. Then by

condition (A.10) (that must hold if (A.7) and the first condition in (3) simultaneously apply,

as established above), player 2’s best response is e22 = 0; this is consistent with (A.9). (By

symmetry, the same argument holds for player 1 following e1 = (0, 2).) Finally, if both raise

their first-round contributions to 2, no further contributions are possible, exactly as (A.9)

specifies.

[Necessity proof.] Note that for (e∗i2(1, 1), e∗j2(1, 1)) = (1, 1) to arise, it must be that

(1− p(1, 1))v − c ≥ (p(1, 2)− p(1, 1))v, i.e., v − 2c ≥ p(1, 2)v − c. This is the first condition

in (3).

Next, note that in the subgame following (0, 1), conditions (A.10) and (A.11) (that

follow from (A.7), the first condition in (3) and A4, as established above) imply that e21 = 0

is player 1’s strictly dominant strategy. This then leaves only two possible NE in this

subgame: (0, 0) and (0, 1). If player 2 chooses e22 = 1, then player 1’s payoff is u1(0, 1; 0, 1) =

p(0, 2)v >︸︷︷︸
by (A.10)

v − 2c = u1(1, 1; 1, 1), making the deviation profitable. Therefore, the

deviation is unprofitable only if (0, 0) is played following e1 = (0, 1) (i.e., only if player 2

chooses e22 = 0 given that e12 = 0, or that p(0, 1)v − c ≥ p(0, 2)v − 2c) and u1(0, 1; 0, 0) =

p(0, 1)v − c ≤ v − 2c = u1(1, 1; 1, 1). Thus, the second and third conditions in (3) follow.

[c] Shirking in the one-shot game implies that (e∗12(0, 0), e∗22(0, 0)) = (0, 0). So for (0, 0; 0, 0) to

be an SPE, we must rule out deviations in the first round. In the proposed SPE, any player i,

say player 2, will receive u2(0, 0; 0, 0) = p(0, 0)v. Consider the possibility of player 2 deviating

to e21 = 1. As argued earlier (under Sufficiency), (e12, e22) = (0, 0) is an NE following (0, 1);

this yields to player 2 the payoff u2(0, 1; 0, 0) = p(0, 1)v − c ≤︸︷︷︸
(e∗N=(0,0))

p(0, 0)v = u2(0, 0; 0, 0),

so the deviation is not gainful. Suppose now that player 2 deviates by choosing e21 = 2; by

condition (A.10) (which follows from (A.7) and the first condition in (3)), player 1 will choose

e12 = 0. The deviation results in the payoff u2(0, 2; 0, 0) = p(0, 2)v − 2c ≤︸︷︷︸
(e∗N=(0,0))

p(0, 0)v =
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u2(0, 0; 0, 0), hence is not gainful. Therefore, e∗T = (0, 0; 0, 0). �

Proof of Lemma 2. Let e∗N = (1, 1), and by definition I(1,1) = {(0, 0), (1, 0), (0, 1), (2, 0), (0, 2)}.
By Proposition 1,

(p(1, 1)− p(0, 1))v − c ≥ 0(A.12)

and (p(2, 1)− p(1, 1))v ≤ c.(A.13)

Fix any (ẽ1, ẽ2) ∈ I(1,1) \ (0, 0). By Lemma 1, such (ẽ1, ẽ2) cannot be an SPE with the

strategy profile (0, 0; ẽ1, ẽ2). This is so because the continuation game following e1 = (0, 0)

is strategically equivalent to the one-shot game GN .

Consider elimination of overall efforts (1, 0). Since (0, 0; 1, 0) cannot be an SPE, what re-

mains to be shown is that (1, 0; 0, 0) is not subgame-perfect. Player 1’s payoff u1(1, 0; 0, 0) =

p(1, 0)v − c; but then player 1 can deviate in Round 1 to e11 = 0 while player 2 chooses

e21 = 0, and with (1, 1) being an NE in the continuation game (because e∗N = (1, 1)) player

1 will receive an overall payoff of u1(0, 0; 1, 1) = p(1, 1)v − c. Thus, player 1 would benefit

(p(1, 1)v− c > p(1, 0)v− c, by A3), ruling out (1, 0; 0, 0) as an SPE. So, under transparency,

overall efforts of (1, 0), and by symmetry (0, 1), cannot be supported in equilibrium.

Next consider overall efforts (2, 0). We know that (0, 0; 2, 0) cannot be an SPE. Consider

then the strategies (2, 0; 0, 0). By (A.12) and invoking A2 and A4, (p(2, 1)−p(2, 0))v−c > 0,

so following (2, 0) player 2 will gain by choosing e22 = 1 over e22 = 0 (see Figure 2). Therefore,

(e∗12(2, 0), e∗22(2, 0)) 6= (0, 0), hence (2, 0; 0, 0) is not an SPE. Finally, consider (1, 0; 1, 0). By

(A.13) and invoking A4, (p(2, 0)−p(1, 0))v−c < 0: if following (1, 0) player 2 chooses e22 = 0,

player 1 would choose e12 = 0 instead of e12 = 1, so (1, 0) cannot be an NE following (1, 0);

this rules out (1, 0; 1, 0) as an SPE. Thus, overall efforts (2, 0), and by symmetry (0, 2),

cannot be supported in equilibrium.

Finally, consider overall efforts (0, 0). There are two subcases to be considered.

If e∗N 6= (0, 0), then by the following result we claim that overall efforts of (0, 0) cannot

arise in equilibrium of GT . This lemma will also be used to prove subsequent results.

Lemma A.1. If (0, 0) 6= e∗N , then (0, 0) 6= e∗T .

Proof. Online supplementary materials.

Alternatively suppose e∗N = (0, 0), in addition to e∗N = (1, 1). We claim that here too

overall efforts of (0, 0) cannot be supported in equilibrium of GT . To see this, note that by
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(A.12) and (A.13) and invoking A2, we can conclude that (0, 1) is an NE in the continuation

game following e1 = (1, 0) (see Figure 2). Moreover, using (A.12) directly and invoking A3,

we see that u1(1, 0; 0, 1) = p(1, 1)v − c ≥ p(0, 1)v > p(0, 0)v = u1(0, 0; 0, 0). This shows that

first-round efforts (0, 0) cannot be supported as part of an equilibrium in the extensive-form

game, since player 1 (in fact, any player) would have an incentive to undertake a first-round

unilateral deviation by choosing e11 = 1 which will be followed up in Round 2 by (0, 1) as an

NE. Therefore, once again overall efforts, (0, 0), cannot be supported in equilibrium of GT .

This completes the proof that overall efforts in I(1,1) cannot be supported in SPE. �

Proof of Lemma 3. Let e∗N = (2, 2), and by definition

I(2,2) = {(0, 0), (1, 0), (0, 1), (2, 0), (0, 2), (1, 2), (2, 1), (1, 1)} .

By Proposition 1,

(1− p(1, 2))v − c ≥ 0(A.14)

and (1− p(0, 2))v − 2c ≥ 0.(A.15)

Fix any (ẽ1, ẽ2) ∈ I(2,2) \ {(0, 0), (1, 1)}. By Lemma 1, such (ẽ1, ẽ2) cannot be supported

in an SPE with the strategy profile (0, 0; ẽ1, ẽ2); the continuation game following e1 = (0, 0)

is strategically equivalent to the one-shot game GN . Note that, by construction ẽ1 6= ẽ2.

Consider elimination of overall efforts (1, 0). Since (0, 0; 1, 0) cannot be an SPE, what re-

mains to be shown is that (1, 0; 0, 0) is not subgame-perfect. Player 1’s payoff is u1(1, 0; 0, 0) =

p(1, 0)v−c; but then player 1 can deviate in Round 1 to e11 = 0 while player 2 chooses e21 = 0,

and with (2, 2) being an NE in the continuation game (because e∗N = (2, 2)) player 1 will

receive an overall payoff of u1(0, 0; 2, 2) = v − 2c. This makes player 1 better off since

u1(0, 0; 2, 2) = v − 2c ≥︸︷︷︸
by (A.14)

p(1, 2)v − c >︸︷︷︸
by A3

p(1, 0)v − c = u1(1, 0; 0, 0).

Therefore, overall efforts (1, 0), and by symmetry (0, 1), cannot be supported in SPE.

Consider overall efforts (2, 0). Aside from (0, 0; 2, 0), which we already argued cannot be

an SPE, these efforts can also arise via the strategy profiles (2, 0; 0, 0) and (1, 0; 1, 0). First

consider (2, 0; 0, 0) in which player 1 receives p(2, 0)v− 2c. But then player 1 can deviate in

Round 1 to e11 = 0, following which (e12, e22) = (2, 2) is an NE in the continuation game

(since e∗N = (2, 2)) and player 1 receives a higher payoff, u1(0, 0; 2, 2) = v − 2c. Hence

(2, 0; 0, 0) is not an SPE.
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Consider next the strategy profile (1, 0; 1, 0). Again, similar to the case just analyzed,

player 1 can deviate in Round 1 to e11 = 0, following which (e12, e22) = (2, 2) realizes and

player 1 is strictly better off compared to his payoff of u1(1, 0; 1, 0) = p(2, 0)v − 2c. Hence

(1, 0; 1, 0) cannot be an SPE.

Thus, overall efforts (2, 0), and by symmetry (0, 2), cannot be supported in SPE.

Consider overall efforts (1, 1). We claim that overall efforts (1, 1) cannot be supported

in an SPE. Corresponding to overall efforts (1, 1), the strategy profile in the extensive form

is one of the following: (0, 0; 1, 1), (1, 1; 0, 0), (1, 0; 0, 1), (0, 1; 1, 0). Each of these profiles

yields player 1 a payoff of p(1, 1)v− c, and since v− 2c ≥ p(1, 2)v− c (recall, e∗N = (2, 2)) it

follows, using A3, that v− 2c > p(1, 1)v− c. It is now easy to see that none of the strategy

profiles will be SPE : given a first-round deviation by player 1 to e11 = 2, in Round 2 player

2 choosing an effort such that overall efforts are (2, 2) is an NE. This would result in a payoff

of v − 2c to player 1, which exceeds his payoff p(1, 1)v − c in the posited equilibrium. Thus,

under transparency, overall efforts of (1, 1) cannot be supported in equilibrium.

Consider overall efforts (2, 1). The strategy profiles that yield these overall efforts are

(2, 1; 0, 0), (2, 0; 0, 1), (1, 1; 1, 0), (1, 0; 1, 1), (0, 1; 2, 0), and (0, 0; 2, 1). Note that in each of

these profiles player 1 receives a payoff of p(2, 1)v−2c. First, it has already been established

at the beginning that the strategy profile (0, 0; 2, 1) cannot be an SPE. Next, examine the

strategy profiles (2, 1; 0, 0) and (2, 0; 0, 1). Neither of these strategy profiles will be an SPE :

given a first-round deviation by player 1 to e11 = 1 in either strategy profile, (e12, e22) =

(1, 2− e21) is an NE in the continuation game that follows (since e∗N = (2, 2)), which results

in a payoff of u1(1, 1; 1, 1) = u1(1, 0; 1, 2) = v − 2c ≥ p(2, 1)v − c > p(2, 1)v − 2c (the

first inequality follows from (A.14) and applying A2). Now consider the strategy profile

(1, 1; 1, 0). For (1, 0) to be an NE following e1 = (1, 1), and given that e∗N = (2, 2) (in

particular, note condition (A.14) and property A2), the following conditions must hold (see

Figure 2):

Player 1’s best-response : 0 ≤ (p(2, 1)− p(1, 1))v − c(A.16)

Player 2’s best-response : (p(2, 1)− p(1, 1))v = (1− p(1, 1))v − c

i.e., 0 = (1− p(2, 1))v − c.(A.17)

However, these conditions are inconsistent, given A4 and A2. Therefore, (e∗12(1, 1), e∗22(1, 1)) 6=
(1, 0), and (1, 1; 1, 0) is not an SPE. Moreover, note that conditions (A.16) and (A.17) must
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also hold for (2, 0) to be an NE following e1 = (0, 1) and for (1, 1) to be an NE following

e1 = (1, 0). Since these conditions are inconsistent, then (e∗12(0, 1), e∗22(0, 1)) 6= (2, 0) and

(e∗12(1, 0), e∗22(1, 0)) 6= (1, 1), and the strategy profiles (0, 1; 2, 0) and (1, 0; 1, 1) are not SPE.

Therefore, none of the strategy profiles yielding overall efforts (2, 1), and by symmetry (1, 2),

can be SPE.

What is left now is to show that overall efforts of (0, 0) cannot be supported in an SPE.

There are three subcases to be considered.

First consider the subcase where e∗N 6= (0, 0). By Lemma A.1, overall efforts (0, 0) cannot

arise in an SPE.

Next, suppose e∗N = (2, 2), e∗N = (0, 0), and e∗N 6= (1, 1). While (0, 0) is clearly an NE in

the continuation game following e1 = (0, 0), (0, 0; 0, 0) cannot be sustained as an equilibrium

in the overall game since a first-round unilateral deviation to e11 = 2 by player 1 is gainful:

u1(2, 0; 0, 2) = v − 2c ≥︸︷︷︸
by (A.15)

p(0, 2)v > p(0, 0)v = u1(0, 0; 0, 0),

thus ruling out overall efforts of (0, 0) in an equilibrium of GT .

Finally, consider the subcase where all symmetric equilibria arise in the one-shot game.

By Lemma 2, overall efforts of (0, 0) cannot be supported in an equilibrium of GT . �

Proof of Proposition 3. We divide the proof into three parts.

[1] First suppose that e∗N = (1, 1) but e∗N 6= (2, 2); this equilibrium may be unique or there

could be another equilibrium e∗N = (0, 0). Then, we show that the overall efforts (1, 1) can

be supported as an SPE in the extensive-form game, and the equilibrium (in terms of overall

efforts) will be unique.

By Proposition 1, e∗N = (1, 1) if and only if

(A.18) (p(2, 1)− p(1, 1))v ≤ c ≤ (p(1, 1)− p(0, 1))v.

Consider the strategy profile (1, 0; 0, 1). By condition (A.18), we know that (0, 1) is an NE

in the continuation game following first-round efforts (1, 0).

Coming back to Round 1, suppose player 1 unilaterally deviates to e11 = 0. Since

e∗N = (1, 1), and the continuation game following e1 = (0, 0) is simply GN , therefore

(e∗12(0, 0), e∗22(0, 0)) = (1, 1). This yields the payoff p(1, 1)v − c to player 1, the same as

his payoff before the deviation. Hence, deviation to e11 = 0 is not gainful for player 1.
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Moreover, since e∗N 6= (2, 2), if player 1 deviates unilaterally in Round 1 by choosing

e11 = 2, then player 2 will not choose e22 = 2. Specifically, player 2 will choose e22 = 1 in

strict preference over e22 = 0: the right-hand side (weak) inequality in (A.18) implies that

(p(2, 1) − p(2, 0))v − c > 0, by A2 and A4. Consequently, this deviation is not gainful for

player 1 since, by (A.18), u1(2, 0; 0, 1) = p(2, 1)v − 2c ≤ p(1, 1)v − c = u1(1, 0; 0, 1). Thus,

there is no profitable deviation for player 1.

There is also no profitable deviation for player 2 in Round 1. To see this, suppose player

2 deviates in Round 1 to e21 = 2. Then by our argument in the previous paragraph but the

players’ roles reversed, in the continuation game player 1 will choose e12 = 0, and

u2(1, 2; 0, 0) = p(1, 2)v − 2c ≤︸︷︷︸
(e∗N=(1,1))

p(1, 1)v − c = u2(1, 0; 0, 1).

Next, suppose player 2 deviates to e21 = 1. Then (e12, e22) = (0, 0) is an NE in the con-

tinuation game following e1 = (1, 1), since (p(2, 1) − p(1, 1))v ≤ c (by (A.18)). Thus,

u2(1, 1; 0, 0) = p(1, 1)v − c = u2(1, 0; 0, 1).

Thus, overall efforts (1, 1) is supported as an SPE with (1, 0; 0, 1).

Next note that the overall efforts of (2, 2) cannot be supported in an SPE of GT , by

Proposition 2[a]. Moreover, by Lemma 2, none of the overall efforts that are inferior to

(1, 1) can be supported as SPE. Also, overall efforts (2, 1), and by symmetry (1, 2), cannot

be supported as SPE. To show this, consider overall efforts (2, 1) which can result from any

of the following strategy profiles: (0, 0; 2, 1), (1, 1; 1, 0), (1, 0; 1, 1), (0, 1; 2, 0), (2, 0; 0, 1), and

(2, 1; 0, 0). By Lemma 1, (e∗12(0, 0), e∗22(0, 0)) 6= (2, 1), hence (0, 0; 2, 1) cannot be an SPE.

Next, consider (1, 1; 1, 0). If (1, 0) is an NE in the continuation game following e1 = (1, 1),

then by A4 and A2 respectively,

(p(2, 1)− p(1, 1))v − c ≥ 0, i.e., (1− p(1, 2))v − c > 0(A.19)

and 0 ≥ (p(2, 2)− p(2, 1))v − c, i.e., 0 ≥ (1− p(1, 2))v − c.(A.20)

However, these conditions are inconsistent. Therefore, (e∗12(1, 1), e∗22(1, 1)) 6= (1, 0), and

(1, 1; 1, 0) cannot be an SPE. By the same argument, the profiles (1, 0; 1, 1) and (0, 1; 2, 0)

cannot be SPE : both (e∗12(1, 0), e∗22(1, 0)) = (1, 1) and (e∗12(0, 1), e∗22(0, 1)) = (2, 0) require

that conditions (A.19) and (A.20) simultaneously hold, an impossibility. Next, the strategy

profile (2, 0; 0, 1) is an SPE only if (e∗12(2, 0), e∗22(2, 0)) = (0, 1), which in turn requires

(p(2, 1)− p(2, 0))v − c ≥ (1− p(2, 0))v − 2c, i.e., 0 ≥ (1− p(2, 1))v − c.
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Consequently, by A2 and then A4, 0 > (p(2, 1) − p(1, 1))v − c, i.e., p(1, 1)v − c >

p(2, 1)v− 2c, thus player 1 gains from a unilateral first-round deviation to e11 = 1: following

e1 = (1, 0), in the continuation game (0, 1) is an NE (since e∗N = (1, 1)), and u1(1, 0; 0, 1) =

p(1, 1)v − c > p(2, 1)v − 2c = u1(2, 0; 1, 0). Therefore, (2, 0; 1, 0) cannot be an SPE. Finally,

consider the strategy profile (2, 1; 0, 0). For (e∗12(2, 1), e∗22(2, 1)) = (0, 0) to arise, it must be

that 0 ≥ (1− p(2, 1))v − c, which implies that, by A2 and A4, 0 > (p(2, 1)− p(1, 1))v − c,
or that p(1, 1)v − c > p(2, 1)v − 2c. But then player 1 will find unilateral deviation to

e11 = 1 gainful, because (e∗12(1, 1), e∗22(1, 1)) = (0, 0) (established earlier to rule out first-

round deviation to e21 = 1 from (1, 0; 0, 1)) and u1(1, 1; 0, 0) = p(1, 1)v− c > p(2, 1)v− 2c =

u1(2, 1; 0, 0). Thus (2, 1; 0, 0) cannot be an SPE either.

This achieves (weak) domination of partial cooperation in the game GN by partial coop-

eration in the game GT , through elimination of all potential inferior equilibria. Moreover,

this is the only overall equilibrium efforts possible in the game GT .

[2] Suppose that e∗N = (2, 2) (possibly unique). Then in the transparent environment overall

efforts of (2, 2) can also be supported in an SPE. To see this, note that if e∗N = (2, 2),

then for every e1 = (e11, e21) ∈ H, the second-round strategy profile (2 − e11, 2 − e21) is an

NE in the continuation game, denoted by (e∗12(e1), e∗22(e1)). Moreover, all strategy profiles

(e1; e∗12(e1), e∗22(e1)), e1 ∈ H, yield:

ui(e11, e21; e
∗
12(e1), e∗22(e1)) = v − 2c for i = 1, 2.

Therefore, for each of these strategy profiles, there exists no profitable first-round deviation

for any player i, since the payoff to the deviating player is the same as what he receives by

not deviating. Thus, full cooperation is an SPE. Moreover, by Lemma 3, none of the overall

efforts that are inferior to (2, 2) can be supported in an SPE. Therefore, full cooperation in

GN is (weakly) dominated by full cooperation as the unique overall equilibrium efforts in the

game GT .

[3] Finally, suppose the unique one-shot equilibrium is e∗N = (0, 0). The following lemma

establishes that partial cooperation cannot arise in an SPE.

Lemma A.2. If e∗N 6= (1, 1), then e∗T 6= (1, 1).

Proof. Online supplementary materials.

However, by Proposition 2[b], full cooperation can arise in equilibrium in the extensive-form

game. �
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Proof of Proposition 5. Suppose there are at least two NE, (ẽ1, ẽ2) and (e∗1, e
∗
2), and

p(ẽ1, ẽ2) > p(e∗1, e
∗
2). W.l.o.g. assume that ẽ2 > e∗2. Then we claim that the equilibria can

be Pareto-ranked with the players no worse off, and at least one player strictly better off, in

equilibrium (ẽ1, ẽ2).

By NE requirement,

[p(ẽ1, ẽ2)− p(e∗1, ẽ2)] v ≥ c1 [ẽ1 − e∗1](A.21)

[p(ẽ1, ẽ2)− p(ẽ1, e∗2)] v ≥ c2 [ẽ2 − e∗2](A.22)

[p(e∗1, e
∗
2)− p(ẽ1, e∗2)] v ≥ c1 [e∗1 − ẽ1](A.23)

[p(e∗1, e
∗
2)− p(e∗1, ẽ2)] v ≥ c2 [e∗2 − ẽ2] .(A.24)

Rewrite (A.21) to obtain:

[
p(ẽ1, ẽ2)− p(e∗1, e∗2) + p(e∗1, e

∗
2)− p(e∗1, ẽ2)︸ ︷︷ ︸

<0, by A3

]
v ≥ c1

[
ẽ1 − e∗1

]
or, [p(ẽ1, ẽ2)− p(e∗1, e∗2)] v > c1 [ẽ1 − e∗1]

or, p(ẽ1, ẽ2)v − c1ẽ1 > p(e∗1, e
∗
2)v − c1e∗1,

which is a strict improvement for player 1.

Next, rewrite (A.22) to obtain:

[
p(ẽ1, ẽ2)− p(e∗1, e∗2) + p(e∗1, e

∗
2)− p(ẽ1, e∗2)

]
v ≥ c2

[
ẽ2 − e∗2

]
,

which, if ẽ1 ≥ e∗1, implies, by A3,

[
p(ẽ1, ẽ2)− p(e∗1, e∗2)

]
v ≥ c2

[
ẽ2 − e∗2

]
,

an improvement for player 2. So consider the possibility that ẽ1 < e∗1. Write

[
p(e∗1, e

∗
2)− p(e∗1, ẽ2)

]
v = −

[
p(e∗1, ẽ2)− p(e∗1, e∗2)

]
v

< −
[
p(ẽ1, ẽ2)− p(ẽ1, e∗2)

]
v (by applying A4, since ẽ2 > e∗2, and ẽ1 < e∗1)

≤ −c2 [ẽ2 − e∗2] (using (A.22))

= c2 [e∗2 − ẽ2] ,

violating the NE requirement (A.24). Hence, ẽ1 < e∗1 is ruled out, completing the proof. �
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Proof of Lemma 4. Suppose, contrary to the claim, e∗N = (0, 0) and e∗N = (1, 1). Then

(refer to Figure 1) it must be that

c ≥ (p(1, 0)− p(0, 0))v(A.25)

and c ≤ (p(1, 1)− p(0, 1))v.(A.26)

However, by A4′, (A.25) implies that c > (p(1, 1)− p(0, 1))v, contradicting (A.26).

Next, suppose that e∗N = (0, 0) and e∗N = (2, 2). This requires that

c ≥ [(p(2, 0)− p(0, 0))v]/2(A.27)

and c ≤ [(1− p(0, 2))v]/2.(A.28)

Condition (A.27) contradicts (A.28), since by A4′, (A.27) implies that c > [(1−p(0, 2))v]/2.

It is also not possible for e∗N = (1, 1) and e∗N = (2, 2) to arise simultaneously. This would

require

(p(2, 1)− p(1, 1))v ≤ c(A.29)

and c ≤ (1− p(1, 2))v,(A.30)

but using A4′ in (A.29) yields 1− p(1, 2))v < c, which contradicts (A.30). �

Proof of Proposition 6. Let ei denote the aggregate effort of player i in ΓN , the game

under non-transparency. By definition, e∗N = (e∗1, e
∗
2) satisfies

(A.31) p(e∗i , e
∗
j)v − ce∗i ≥ p(ei, e

∗
j)v − cei, ∀ei, ∀i.

Denote the first-round efforts (e11, e21) in the game with transparency by e1, and recall

that we defined (in section 3) incremental gains from second-round actions (ei2, ej2) given

history e1, as

ûi2(ei2, ej2|e1) = ui(ei1 + ei2, ej1 + ej2)− ûi1(ei1, ej1).

We now claim that for any NE (symmetric or asymmetric) in the non-transparency game,

there is a strategy profile in the extensive-form game (under transparency) with the same

aggregate efforts that will be an equilibrium in the two-round game. Specifically, for any

e∗N = (e∗1, e
∗
2), the following strategies form an SPE in the extensive form:

1. In the first round, e∗i1 = e∗i for each player i, and
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2. In the second round, for i = 1, 2,

(A.32) e∗i2 =


0 if e1 = (e∗i , ẽj);

e∗i − ẽi if e1 = (ẽi, e
∗
j) and ẽi < e∗i ;

e∗∗i2 if e1 = (ẽi, e
∗
j) and ẽi > e∗i ;

σ∗∗i2 if e1 = (ẽi, ẽj), ẽi 6= e∗i , and ẽj 6= e∗j ,

where: e∗∗i2 = arg maxei2∈Ei2
ûi2(ei2, 0|(ẽi, ẽj)), Ei2 being player i’s set of admissible

second-round effort choices, and j 6= i (the solution e∗∗i2 exists because the action set is

finite); and (σ∗∗12, σ
∗∗
22) corresponds to some NE in the continuation game following the

history specified.

Below we verify the Nash equilibrium property of the continuation strategies – both on-

and off-the-equilibrium path.

First, consider the second-round strategies (0, 0) following e1 = (e∗i , e
∗
j). In the second

round player j would choose, as specified by (A.32), e∗j2 = 0, to which we claim that player

i’s best response is also to set e∗i2 = 0. To see this, note that i’s incremental gain in the

second round from choosing ei2 = 0 is

ûi2(0, 0|(e∗i , e∗j)) =
[
p(e∗i + 0, e∗j + 0)− p(e∗i , e∗j)

]
v − c× 0,

whereas choosing any ei2 > 0 yields

ûi2(ei2, 0|(e∗i , e∗j)) =
[
p(e∗i + ei2, e

∗
j + 0)− p(e∗i , e∗j)

]
v − cei2.

Thus,

ûi2(0, 0|(e∗i , e∗j))− ûi2(ei2, 0|(e∗i , e∗j)) =
[
p(e∗i , e

∗
j)− p(e∗i + ei2, e

∗
j)
]
v − c [e∗i − (e∗i + ei2)]

≥ 0. (by (A.31))

By similar reasoning, ûj2(0, 0|(e∗i , e∗j)) ≥ ûj2(0, ej2|(e∗i , e∗j)). Therefore, (0, 0) forms an NE in

the continuation game following e1 = (e∗i , e
∗
j).

Next, we look at subgames following unilateral deviations. Consider player i’s second-

round strategy following e1 = (ẽi, e
∗
j), where ẽi < e∗i , i.e., player i deviates in the first round

by reducing ei1. If player j chooses 0, player i cannot do better than to totally make up for

his first-round reduction in the second round, that is, choose ei2 = e∗i − ẽi. We see this by
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calculating incremental payoffs and then comparing:

ûi2(e
∗
i − ẽi, 0|(ẽi, e∗j)) =

[
p(ẽi + (e∗i − ẽi), e∗j + 0)− p(ẽi, e∗j)

]
v − c× (e∗i − ẽi)

=
[
p(e∗i , e

∗
j)− p(ẽi, e∗j)

]
v − ce∗i + cẽi,

ûi2(e
′
i2, 0|(ẽi, e∗j)) =

[
p(ẽi + e′i2, e

∗
j)− p(ẽi, e∗j)

]
v − ce′i2, for e′i2 6= e∗i − ẽi;

ûi2(e
∗
i − ẽi, 0|(ẽi, e∗j))− ûi2(e′i2, 0|(ẽi, e∗j)) =

[
p(e∗i , e

∗
j)v − ce∗i

]
−
[
p(ẽi + ei2, e

∗
j)v − c× (ẽi + e′i2)

]
≥ 0. (by (A.31))

On the other hand, if player i follows his continuation strategy in (A.32), player j’s second-

round action ej2 = 0 is optimal, since for any ej2 > 0:

ûj2(e
∗
i − ẽi, 0|(ẽi, e∗j))− ûj2(e∗i − ẽi, ej2|(ẽi, e∗j))

=
[
p(e∗i , e

∗
j)− p(ẽi, e∗j)

]
v −

{[
p(e∗i , e

∗
j + ej2)− p(ẽi, e∗j)

]
v − cej2

}
= p(e∗i , e

∗
j)v − ce∗j −

[
p(e∗i , e

∗
j + ej2)v − ce∗j − cej2

]
=

[
p(e∗i , e

∗
j)v − ce∗j

]
−
[
p(e∗i , e

∗
j + ej2)v − c× (e∗j + ej2)

]
≥ 0. (by (A.31))

Therefore, the profile (e∗i−ẽi, 0) forms an NE in the continuation game following e1 = (ẽi, e
∗
j),

where ẽi < e∗i .

Now consider player i’s second-round strategy following e1 = (ẽi, e
∗
j), where ẽi > e∗i , i.e,

player i deviates in the first round by increasing ei1. If player j chooses 0, by construction

(and as specified in (A.32)) player i’s best response is e∗∗i2 = maxei2∈Ei2
ûi2(ei2, 0|(ẽi, e∗j)). On

the other hand, if player i follows this strategy then player j’s second-round action ej2 = 0

is optimal. To see this, first note that

ûj2(e
∗∗
i2 , 0|(ẽi, e∗j))− ûj2(e∗∗i2 , ej2|(ẽi, e∗j))

=
[
p(ẽi + e∗∗i2 , e

∗
j)− p(ẽi, e∗j)

]
v −

{[
p(ẽi + e∗∗i2 , e

∗
j + ej2)− p(ẽi, e∗j)

]
v − cej2

}
= p(ẽi + e∗∗i2 , e

∗
j)v − ce∗j −

[
p(ẽi + e∗∗i2 , e

∗
j + ej2)v − ce∗j − cej2

]
= p(ẽi + e∗∗i2 , e

∗
j)− ce∗j −

[
p(ẽi + e∗∗i2 , e

∗
j + ej2)v − c× (e∗j + ej2)

]
, for any ej2 > 0.

Next, rewrite (A.31) as p(e∗i , e
∗
j)v − ce∗j ≥ p(e∗i , ej)v − cej, ∀ej. This condition implies that

for ẽj > e∗j ,

cẽj − ce∗j ≥
[
p(e∗i , ẽj)− p(e∗i , e∗j)

]
v.
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Therefore,

c
[
e∗j + ej2

]
− ce∗j ≥

[
p(e∗i , e

∗
j + ej2)− p(e∗i , e∗j)

]
v

>
[
p(ẽi + e∗∗i2 , e

∗
j + ej2)− p(ẽi + e∗∗i2 , e

∗
j)
]
v

>
[
p(ẽi + e∗∗i2 , e

∗
j)− p(ẽi + e∗∗i2 , e

∗
j + ej2)

]
v,(A.33)

where the second inequality follows from A4′. Using (A.33) we conclude that

ûj2(e
∗∗
i2 , 0|(ẽi, e∗j))− ûj2(e∗∗i2 , ej2|(ẽi, e∗j)) > 0, for any ej2 > 0.

That is, following the first-round effort profile (ẽi, e
∗
j) and given player i’s second-round action

e∗∗i2 , player j’s best response in the second round is 0. Therefore, the profile (e∗∗i2 , 0) forms an

NE in the continuation game following e1 = (ẽi, e
∗
j), ẽi > e∗i .

Next, following joint deviations in the first round, (σ∗∗12, σ
∗∗
22) will be played (as recom-

mended in (A.32)), which by construction is an NE in the continuation game.

Let us now return to the first round and consider the overall strategies (e∗i , e
∗
j ; 0, 0). This

profile yields a payoff to player i of ui(e
∗
i , e
∗
j ; 0, 0) = p(e∗i , e

∗
j)v − ce∗i . It is clear that there

does not exist any profitable unilateral first-round deviation for any player: if i lowers his

first-round contribution to ẽi < e∗i , he receives ui(ẽi, e
∗
j ; e
∗
i − ẽi, 0) = p(e∗i , e

∗
j)v − ce∗i , which

is equal to his payoff from not deviating, and if he increases it to ẽi > e∗i , he receives

ui(ẽi, e
∗
j ; e
∗∗
i2 , 0) = p(ẽi + e∗∗i2 , e

∗
j)v− c[ẽi + e∗∗i2 ] ≤ p(e∗i , e

∗
j)v− ce∗i (by condition (A.31)); similar

argument is applicable to player j. Therefore, e∗T = (e∗1, e
∗
2; 0, 0). �

Proof of Proposition 7. Suppose not so that one of the players, say player 1, would

benefit by deviating from the claimed equilibrium strategy under non-transparency. So there

must be some e1 6= e∗1 such that

u1(e1, e
∗
2) > u1(e

∗
1, e
∗
2)

i.e., p(e1, e
∗
2)v − ce1 > p(e∗1, e

∗
2)v − ce∗1.(A.34)

Claim 1. e1 ≥ e∗11 is not possible.

To see why, let e1 = e∗11 + e12 where e12 ∈ {0, 1, 2} with the restriction that e12 ≤ 2− e∗11.
Now rewrite (A.34) as:

[p(e∗11 + e12, e
∗
21 + e∗22)− p(e∗11, e∗21)]v − ce12 > [p(e∗11 + e∗12, e

∗
21 + e∗22)− p(e∗11, e∗21)]v − ce∗12,

i.e., û12(e12, e
∗
22|(e∗11, e∗21)) > û12(e

∗
12, e

∗
22|(e∗11, e∗21)),
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but this contradicts the fact that (e∗11, e
∗
21; e

∗
12(e

∗
11, e

∗
21), e

∗
22(e

∗
11, e

∗
21)) is an SPE in the extensive-

form game under transparency. ||
Next consider the possibility of profitable deviation in the one-shot game (under non-

transparency) with e1 < e∗11.

First note that e∗11 ≥ 1, for deviation to a lower effort level to be feasible. Also observe

that for the SPE, e∗T , it must be that e∗22 ≥ 1, because otherwise profitable deviation to e1

in the one-shot game is not consistent with the equilibrium e∗T . (We write the strategies

eT = (e∗11, e
∗
21; e

∗
12(e

∗
11, e

∗
21), e

∗
22(e

∗
11, e

∗
21)) as e∗T .)

Since (e∗11, e
∗
21; e

∗
12(e

∗
11, e

∗
21), e

∗
22(e

∗
11, e

∗
21)) is an SPE, the following two best-response con-

ditions will be satisfied:

[1] (Optimality of Round 2 decisions) In the second round player 1 will not deviate

from his equilibrium effort, that is,

[p(e∗11 + e∗12, e
∗
21 + e∗22)− p(e∗11, e∗21)]v − ce∗12

≥ [p(e∗11 + e12, e
∗
21 + e∗22)− p(e∗11, e∗21)]v − ce12,(A.35)

for any 0 ≤ e12 ≤ 2− e∗11. A similar condition can be stated for player 2.

[2] (Optimality of Round 1 decisions) It must be that player 1 will not find deviation

by lowering his first-round effort profitable. That is, for any e11 < e∗11,

p(e∗11 + e∗12, e
∗
21 + e∗22)v − c[e∗11 + e∗12]

≥ p(e11 + e∗12(e11, e
∗
21), e

∗
21 + e∗22(e11, e

∗
21))v − c[e11 + e∗12(e11, e

∗
21)],(A.36)

for all Nash equilibria, (e∗12(e11, e
∗
21), e

∗
22(e11, e

∗
21)), in the continuation game following

e1 = (e11, e
∗
21). Again, a similar condition can be written for player 2.

Following on the optimality of first-round decisions, we further claim:

The best deviation payoff for player 1 when he lowers his first-round effort e11 below e∗11

is same as his original SPE payoff.

We show this result by establishing the following steps.

First, let player 1, upon deviation in Round 1, increase his second-round effort by ∆ =

e∗11 − e11 > 0 to e∗12 + ∆, and restore his total efforts to e11 + e∗12 + ∆ = e∗11 + e∗12.
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Second, with player 1’s total efforts equalling e∗1, player 2’s best response in Round 2

continues to be e∗22; this follows from eT being SPE (i.e., by writing a condition for player 2

similar to (A.35)).

Third, with total efforts by player 2 over the two rounds equalling e∗2 (shown in the second

step), below we reconfirm that player 1’s best response in Round 2 (after Round 1 deviation

to e11) will indeed be to choose e∗12 + ∆. To see this, recall (A.35) which can be written as:

[p(e∗1, e
∗
2)− p(e11, e∗21)]v − ce∗12

≥ [p(e∗11 + e12, e
∗
2)− p(e11, e∗21)]v − ce12, for any 0 ≤ e12 ≤ 2− e∗11

i.e., [p(e∗1, e
∗
2)− p(e11, e∗21)]v − c[e∗1 − e11] + c[e∗1 − e11 − e∗12]

≥ [p(e11 + ẽ12, e
∗
2)− p(e11, e∗21)]v − c[e11 + ẽ12 − e∗11], for e11 + ẽ12 = e∗11 + e12 ≤ 2

i.e., [p(e∗1, e
∗
2)− p(e11, e∗21)]v − c[e∗1 − e11]

≥ [p(e11 + ẽ12, e
∗
2)− p(e11, e∗21)]v − cẽ12 + {−c[e11 − e∗11]− c[e∗1 − e11 − e∗12]},

for 0 ≤ ẽ12 ≤ 2− e11

i.e., [p(e∗1, e
∗
2)− p(e11, e∗21)]v − c[e∗1 − e11] ≥ [p(e11 + ẽ12, e

∗
2)− p(e11, e∗21)]v − cẽ12,(A.37)

for 0 ≤ ẽ12 ≤ 2− e11.

(The last inequality is the optimality of Round 2 decision by player 2 after cutting back on

Round 1 effort.)

The second and third steps, together, establish that player 1 choosing e∗12 + ∆ and player

2 choosing e∗22 form an NE in the continuation game following the deviation by player 1 in

Round 1.

Now, by (A.38),

p(e∗1, e
∗
2)v − c[e∗1 − e11] ≥ p(e11, e

∗
2)v

i.e., p(e∗1, e
∗
2)v − ce∗1 ≥ p(e11, e

∗
2)v − ce11, for any e11 < e∗11,

contradicting (A.34).

We have thus shown that in the one-shot game under non-transparency, if player 2 chooses

e∗2 then deviation by player 1 (as in (A.34)) is not possible. Similarly, if player 1 chooses e∗1,

deviation by player 2 is not possible. Thus, (e∗1, e
∗
2) is an NE under non-transparency. �

Supplementary materials

The manuscript contains additional supplementary materials.
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