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Abstract

We introduce a game in preference form, which consists of a game form and a preference

structure, and define preference rationalizability that allows for each player’s ex-post preferences

over outcomes to depend on opponents’ actions. We show that preference rationalizability is

invariant to redundant types and states as long as all players have simplex restrictions on

their ex-post preferences. We analyze the relationship between preference-form games and

conventional payoff-form games. In particular, even if all players have simplex restrictions, we

argue that there are multiple payoff-form games that correspond to a given preference-form

game, and show that only one of them has the set of interim correlated rationalizable actions

equal to the set of preference rationalizable actions in the preference-form game. We also discuss

cases where the simplex assumption is violated.

1 Introduction

Since the ordinalist revolution of the 1930’s, economists have generally taken preferences to be

the primitive object of analysis in consumer choice, with utility functions being understood as

convenient tools to represent preferences. In game theoretic analysis, it has been conventional

since von Neumann and Morgenstern (1944) to represent a game in “payoff form”, where action

profiles are associated with “payoffs” or “utilities” that players receive. This is usually understood

to be a reduced-form model of a situation where action profiles give rise to outcomes and players’

preferences over (lotteries over) outcomes can be represented using the payoffs/utilities. However,

we will argue that this reduced-form representation causes confusion for foundational questions

such as defining solution concepts. For this reason, we introduce a class of games in “preference

form”, which consist of a “game form”, mapping action profiles into outcomes, and a “preference
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structure”, specifying players’ expected-utility preferences. We characterize the implications of

common certainty of rationality in this setting and show that it corresponds to a solution concept

that we label “preference rationalizability”. We show how preference-form games can be mapped

into standard payoff-form games by the introduction of appropriate state spaces. However, we

show that while preference rationalizability is not sensitive to the choice of state space in the

model (and thus captures common certainty of rationality independent of the state space), standard

definitions of rationalizability, i.e. correlated rationalizability (Brandenburger and Dekel (1987)) for

complete-information game and interim correlated rationalizability (Dekel, Fudenberg and Morris

(2007)) for incomplete-information games, are sensitive in the payoff-form formulation.

The following example will be used to motivate preference-form games and our definition of

preference rationalizability. Consider a setting with two players, Ann and Bob, and three possible

outcomes, go to an old (known) restaurant (zold), try a new one (znew) or stay at home (zstay).
1

Suppose that we (the modelers) know that both players happen to have the same expected-utility

preferences over lotteries: they strictly prefer to go to the new restaurant to the old restaurant

and strictly prefer either restaurant to staying at home. More specifically, they are each indifferent

between (i) the old restaurant and (ii) a lottery consisting of 4/5 chance of going to the new

restaurant and a 1/5 chance of staying at home. We can summarize these preferences by saying

that they have utility indices (12, 15, 0) over the three outcomes (zold, znew, zstay).
2 While we are

certain of the players’ preferences over lotteries (i.e., what they would choose if given a choice among

lotteries), we do not believe that we know the players’ “true” preferences, i.e., their preferences in all

contingencies we could imagine. Let us suppose that we believe that contingent on all possibilities

we are prepared to allow for, each player strictly prefers the old restaurant to staying at home,

weakly prefers the new restaurant to staying at home and weakly prefers the old restaurant to the

lottery consisting of a 1/10 chance of going to the new restaurant and a 9/10 chance of staying at

home. Thus there are upper and lower bounds on how good or bad the new restaurant could be.

We can summarize these preferences by saying that each player has ex-post preferences that can

be represented by utility indices that are a convex combination of (12, 120, 0) and (12, 0, 0). While

we are sure that Ann and Bob have the same unconditional preferences, we are not sure that they

have the same ex-post preferences.

Now suppose that the players face the following strategic environment: if both say “yes”, they

go to the new restaurant for sure; if both say “no”, they go to the old one; if one says “yes” and

1Outcome zstay does not play a substantive role in the discussion in the introduction but will be needed to conform

with our general setup in Section 2, where we exclude completely indifferent ex-post preferences.
2Utility indices are determined only up to affine transformations and the choice of utility indices in the introduction

is for expository convenience, i.e., to avoid fractions later.
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one says “no”, there is a 2/3 chance they will end up going to the new restaurant and 1/3 to the

old restaurant. The following table represents this situation

yes no

yes znew (23 , znew;
1
3 , zold)

no (23 , znew;
1
3 , zold) zold

, (1)

where rows correspond to Ann’s action, columns correspond to Bob’s action and the entries in the

table represent lotteries over the outcomes.

We just defined an example of a preference-form game by specifying a preference structure (in

the paragraph before the previous one) describing what is known about players’ preferences over

outcomes; and game form (in the previous paragraph and summarized in table (1)). Since the new

restaurant is strictly preferred to the old, saying “yes” seems like a dominant strategy for, say, Ann.

However, we will argue that if Ann is unsure if Bob will say “yes” or “no”, then action “no” is also

consistent with common certainty of rationality. To see why, observe that choosing an action for

Ann is equivalent to choosing an (Anscombe-Aumann) act that maps actions of Bob to lotteries

over outcomes. Thus saying “yes” is equivalent to going to the new restaurant for sure if Bob says

“yes”, and with only probability 2/3 if Bob says “no”; saying “no” is equivalent to going to the new

restaurant with probability 2/3 if Bob says “yes”, and going to the old restaurant if Bob says “no”.

The preference structure did not pin down Ann’s preferences over such acts. In particular, suppose

that Ann assigned probability 1/2 to Bob saying “yes” and her ex-post preferences being represented

by (12, 30, 0), and probability 1/2 to Bob saying “no” and her ex-post preferences being represented

by (12, 0, 0). In this case, the expected payoff to saying “yes” would be (30 + 1/3 × 12)/2 = 17,

while the payoff to saying “no” would be (2/3 × 30 + 1/3 × 12 + 12)/2 = 18. By symmetry, each

action is then consistent with common certainty of rationality and thus preference rationalizable in

the sense that we will define it.

While it is important to our approach that ex-post preferences are not pinned down by the

preference structure, we do impose restrictions on ex-post preferences. In the above example, recall

that we made assumptions that ex-post preferences are represented by convex combinations of

utility indices (12, 120, 0) and (12, 0, 0). It turns out that if we impose no restriction on ex-post

preferences, then our framework and solution concept behave quite badly. For the first half of the

paper, we therefore focus on a well-behaved class of “simplex” restrictions on ex-post preferences.

We impose the requirement that the set of ex-post preferences are represented by the convex hull

of a finite set of independent utility indices on outcomes. Note that our example satisfies this

restriction. In the second half of the paper, we examine what happens as the simplex restrictions

are relaxed.
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A key feature of the above example and our analysis in general is that while we make assumptions

about players’ (perhaps interdependent) preferences over lotteries, we assume that these do not pin

down all possible ex-post preferences. An alternative response would be to assume a rich set of

incomplete-information states, as in Harsanyi (1967/68), and assume that ex-post preferences are

pinned down by a sufficiently rich state space. There are two reasons why we prefer not to go

down this route. First, we do not think that the modeler will know how to specify the state space.

If states reflect outcome uncertainty (i.e., different states give rise to distinct outcomes), we can

imagine that states are in principle observable. But to the extent that the uncertainty is about

preferences over fixed physical outcomes, it is not clear that states have an observable counterpart.

Second, we believe our modelling choice follows a long and productive “small worlds” modelling

strategy in the literature on the epistemic foundations of game theory: Savage (1954) argued that

states (in his single person decision theory) should not be interpreted as being exhaustive and this

view has been widely adopted in giving decision theoretic foundations to game theoretic analysis.

Thus Aumann (1987) made an influential argument that correlation between the actions of two

players in a third player’s mind...

....has no connection with any overt or even covert collusion between 1 and 2; they may

be acting entirely independently. Thus it may be common knowledge that both 1 and

2 went to business school, or perhaps to the same business school; but 3 may not know

what is taught there. In that case 3 would think it quite likely that they would take

similar actions, without being able to guess what those actions might be.3

Aumann was not proposing that we should explicitly include the possibility that 1 and 2 attended

the same business school in our description of states. Rather, he was arguing that there might

be a richer structure behind his small worlds model of correlated equilibrium. Similarly, we can

imagine that there is some reason why Bob saying “yes” is correlated in Ann’s mind with a more

desirable experience at the new restaurant but we do not know how to model it. To allow Aumann’s

unmodelled correlation and not allow our correlation of actions with preferences seems inconsistent.

Nonetheless, the “payoff-form” framework is standard and it is natural to ask if our richer

framework is needed or if there is an appropriate way of embedding our analysis in the standard

framework. We investigate this issue in detail. Under simplex restrictions, we argue that there are

two natural ways to represent an arbitrary preference-form game by a payoff-form game. We can

illustrate these two representations with our example. One representation is a complete-information

3This interpretive issue arises in Aumann’s (1987) justification of correlated equilibrium and also in work arguing

that correlated rationalizability captures the implications of common certainty of rationality in complete-information

games (see Brandenburger and Dekel (1987), Tan and Werlang (1988) and, for an opposing view, Bernheim (1987)).
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payoff-form game with expected payoffs

yes no

yes 15, 15 14, 14

no 14, 14 12, 12

In this game, saying “yes” is a dominant strategy and thus saying “yes” is the unique correlated

rationalizable action. An alternative approach—which relies on simplex restrictions—is to consider

the incomplete-information payoff-form game with four states where a state specifies for each of the

two players which of the two extreme points of the possible ex-post preferences correspond to that

player’s true preference. Thus there would be states for each player where payoffs of that player

would be given by matrices corresponding to the two extreme points:

state 1 yes no

yes 120 72

no 72 12

,

state 2 yes no

yes 0 4

no 4 12

.

In this class of payoff-form games with incomplete information, Dekel, Fudenberg and Morris (2007)

argued that interim correlated rationalizability is the solution concept that reflects common cer-

tainty of rationality. Both actions are interim correlated rationalizable in the example. In general,

we show that the set of (Bayes-Nash) equilibria are the same in the preference-form game and its

minimal (i.e., the former) and expansive (i.e., the latter) payoff-form versions, but that the set of

preference-rationalizable actions equals the set of interim correlated rationalizable actions in the

expansive payoff-form representation only, and includes (strictly in some games) the set of interim

correlated rationalizable actions in the minimal payoff-form representation. Thus if we stick to the

payoff-form formulation, interim correlated rationalizability characterizes the behavioral implica-

tions of common certainty of rationality and beliefs and higher-order beliefs over the (exogenously

given) state space, but does not provide an operational definition of the state space. We show that

if we assume simplex restrictions on ex-post preferences, we can use those restrictions to define the

unique state-space representation under which interim correlated rationalizable actions coincide

with preference rationalizable actions.

In the second half of the paper, we examine what happens to our analysis if we relax the sim-

plex assumption. If we relax this assumption slightly and allow for non-simplex convex polytope

restrictions, then preference rationalizability may not be invariant to redundant types or states, nor

may it be equivalent to interim correlated rationalizability in any corresponding payoff-form game.

Moreover, if we drop such restrictions and allow for any state-dependent utility indices, then pref-

erence rationalizability becomes oddly behaved. For example, the set of preference rationalizable

5



actions may not be upper hemicontinuous with respect to slight changes in game forms. Also, the

iteration procedure always stops in one step, and hence preference rationalizability depends only on

preferences over outcomes (“first-order preference”), and is independent of how these preferences

depend on each other’s type (“higher-order preferences”). This is in sharp contrast to Bergemann,

Morris and Takahashi (2011), where we show that if ex-post utility indices are restricted to a

bounded set, then there exists a game form in which two types have disjoint sets of preference

rationalizable actions if and only if they have different hierarchies of preferences (preferences and

higher-order preferences) over outcomes.4

In the example we presented, the preference structure was degenerate with each player having

one possible type so that there was common certainty of preferences over lotteries. Our main results

allow for rich structures of interdependent preferences, where players have a set of types and each

type has expected-utility preferences over Anscombe-Aumann acts over the other players’ types.

A companion paper, Bergemann, Morris and Takahashi (2011), identifies a canonical space of all

relevant interdependent preferences à la Mertens and Zamir (1985), and shows how they can be

observationally distinguished. In this sense, we allow for arbitrary preference uncertainty in our

framework. Our main results focus on the case where there is no outcome uncertainty, so that there

is common certainty of the mapping from action profiles to lotteries over outcomes. However, we

also discuss how to incorporate outcome uncertainty into the analysis.

The rest of the paper is organized as follows. Section 2 introduces decision-theoretic notations

to discuss preferences represented by state-dependent utility indices. Section 3 defines preference-

form games and preference rationalizability as a solution concept. Section 4 discusses relationships

between preference rationalizability in preference-form games and interim correlated rationalizabil-

ity in payoff-form games. Section 5 discusses cases with non-simplex restrictions on ex-post utility

indices. Section 6 concludes.

2 State-Dependent Utilities

Throughout the paper, we consider expected-utility preferences over Anscombe-Aumann acts. In

this section, we provide notations for a single decision-maker, which will be incorporated to strategic

environments in the next section.

Let Z be a finite set of outcomes with |Z| ≥ 2. We say that U is a restriction on state-dependent

utility indices if U is a non-empty convex subset of RZ such that (A) no u ∈ U is constant, and

4Dekel, Fudenberg and Morris (2006, 2007) show an analogous result for payoff-form games: given a state space,

there exists a profile of state-dependent payoff functions in which two types have disjoint sets of interim correlated

rationalizable actions if and only if they have different hierarchies of beliefs over states.
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(B) for any u, v ∈ U , if there exist α > 0 and β ∈ R such that v(z) = αu(z) + β for any z ∈ Z,

then u = v. A restriction U is a simplex if (C) U is equal to the convex hull of a finite set

{u1, u2, . . . , uK} such that u2 − u1, u3 − u1, . . . , uK − u1 are linearly independent. An element

of U can be identified with the expected-utility preference over lotteries it represents. Property

(A) ensures that it does not contain complete indifference. Property (B) ensures that there is a

unique cardinal representation of a given preference. Property (C) is a substantial assumption on

preferences. To present our results in the simplest environment, we maintain this assumption in

Sections 2–4, and discuss non-simplex restrictions only in Section 5.

Fix a non-empty finite state space X, and let F (X) be the set of all (Anscombe-Aumann)

acts f : X → ∆(Z). Given X and any restriction U on utility indices, let PU (X) be the set of

preferences � over F (X) that are represented by state-dependent utility indices that belong to U ,

i.e., the set of preferences � over F (X) such that, for some q ∈ ∆(X) and {u(· | x)}x∈X ⊂ U ,

∀f, f ′ ∈ F (X), f � f ′ ⇔
∑
x,z

q(x)f(z | x)u(z | x) ≥
∑
x,z

q(x)f ′(z | x)u(z | x).

A state x is �-null if � is indifferent among outcomes contingent on x, or equivalently, q(x) = 0.

By Properties (A) and (B) of U , q and u(· | x) are uniquely determined up to �-null states. For

�-non-null state x, we can define the conditional preference �x over ∆(Z), which is represented by

u(· | x).
Note that the decision-maker’s subjective belief q over X depends on cardinal utility represen-

tations in U . However, PU (X) is independent of cardinal utility representations. That is, for two

restrictions U = conv{u1, . . . , uK} and V = conv{v1, . . . , vK}, if for each k, there exist αk > 0

and βk ∈ R such that vk(z) = αkuk(z) + βk for any z ∈ Z, then we have PU (X) = P V (X).5

Thus PU (X) corresponds to a set of preferences independent of representation with probabilities

and cardinal utilities. For ease of exposition, however, we will sometimes refer to probabilities and

cardinal utilities.

Note also that, given simplex restriction U , PU (X) is isomorphic to ∆(X×extU).6 It is because

each � ∈ P (X) is represented by q ∈ ∆(X) and {u(· | x)}x∈X ⊂ U uniquely up to �-null states x,

and each u(· | x) is expressed as a convex combination of extU uniquely.

We have the following examples of PU (X): Examples 1–4 for simplex restrictions, and Example

5 for a non-simplex restriction.

Example 1 (state independence). Let U = {u} with non-constant u ∈ RZ . Then PU (X) is the

set of preferences with state-independent utility index u. Each � ∈ PU (X) is then represented by

q ∈ ∆(X).

5For a subset X ⊆ RZ , convX denotes the convex hull of X.
6For a convex subset X ⊆ RZ , extX denotes the set of extreme points of X.
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Example 2 (ordinal monotonicity). For Z = {z1, . . . , zm}, let U = conv{u2, . . . , um}, where

uk(z) =

0 if z = z1, . . . , zk−1,

1 if z = zk, . . . , zm

for each k = 2, . . . ,m. Then each � ∈ PU (X) is represented by q ∈ ∆(X) and {u(· | x)}x∈X such

that 1 = u(zm | x) ≥ u(zm−1 | x) ≥ · · · ≥ u(z1 | x) = 0 for any x ∈ X. That is, PU (X) is the set

of preferences such that the conditional preference �x satisfies zm �x zm−1 �x · · · �x z1 for all x,

and zm �x z1 for some (non-null) x.7

Example 3 (worst outcome). For Z = {z1, . . . , zm}, let U = conv{u2, . . . , um}, where

uk(z) =

0 if z 6= zk,

1 if z = zk

for each k = 2, . . . ,m. Then each � ∈ PU (X) is represented by q ∈ ∆(X) and {u(· | x)}x∈X such

that for each x ∈ X, we have 1 ≥ u(z | x) ≥ u(z1 | x) = 0 for all z 6= z1 and u(z | x) > 0 for some

z 6= z1. That is, PU (X) is the set of preferences such that the conditional preference �x satisfies

z �x z1 for all (x, z), and z �x z1 for some (x, z).8

Example 4 (bounded valuation). For Z = {z1, . . . , zm}, let U = conv{u2, u3, . . . , um}, where

u2(z) =

0 if z 6= z2,

1 if z = z2

and

uk(z) =


0 if z 6= z2, zk,

1 if z = z2,

v if z = zk

for k = 3, . . . ,m. Then each � ∈ PU (X) is represented by q ∈ ∆(X) and {u(· | x)}x∈X such that

for each x ∈ X, we have 1 = u(z2 | x) > u(z1 | x) = 0, u(z | x) ≥ 0 for any z 6= z1, z2, and∑
z 6=z1,z2

u(z | x) ≤ v.9 That is, PU (X) is the set of preferences such that there exists a non-null

7In related contexts, Ledyard (1986, Section 4.3) requires a strict version of ordinal monotonicity, i.e., zm �x

zm−1 �x · · · �x z1 for non-null x; and Börgers (1993) considers another strict version where utility indices are

required to be state-independent. See also Lo (2000). Bogomolnaia and Moulin (2001) introduce a related notion of

ordinal efficiency in the random assignment problem.
8This restriction is adopted in Bergemann, Morris and Takahashi (2011).
9The normalization based on these utility indices is in the spirit of quasi-linear utilities, where the probability

difference between z1 and z2 is used as a numeraire. That is, each outcome z 6= z1, z2 is evaluated by how many

percentage points of z2 versus z1 the decision-maker is willing to give up in order to increase one percentage point of

the outcome z versus z1.
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state, and for every such non-null state x, the conditional preference �x satisfies z2 �x z1, z �x z1

for any z 6= z1, z2, and

(1− (m− 2)pv)z1 + (m− 2)pvz2 �x (1− (m− 2)p)z1 + p(z3 + · · ·+ zm)

for 0 < p ≤ (m− 2)min(1/v, 1).

Example 5 (“square”). For Z = {z1, z2, z3, z4}, let U = conv{u{2}, u{2,3}, u{2,4}, u{2,3,4}}, where

uk(zl) =

0 if l /∈ k,

1 if l ∈ k

for each k ⊆ {2, 3, 4}. Note that U is not a simplex restriction. Each � ∈ PU (X) is represented

by q ∈ ∆(X) and {u(· | x)}x∈X such that for each x ∈ X, we have u(z1 | x) = 0, u(z2 | x) = 1,

and u(z3 | x), u(z4 | x) ∈ [0, 1]. That is, PU (X) is the set of preferences such that the conditional

preference �x satisfies z2 �x z3 �x z1 and z2 �x z4 �x z1 for all x, and z2 �x z1 for some x.

3 Preference-Form Games and Preference Rationalizability

3.1 A Game in Preference Form

We describe a strategic environment by a combination of a game form (or a mechanism) and

what we call a preference structure. Let I be a non-empty finite set of players, and Z be a

finite set of outcomes with |Z| ≥ 2, which incorporate both public outcomes and allocations of

private outcomes. (To distinguish between public and private outcomes explicitly, we could let

Z = Z0 ×
∏

i Zi and assume that player i cares only about outcomes in the Z0 × Zi dimension.)

A game form consists of ((Ai)i∈I , O), where Ai is a non-empty finite set of actions available to

player i, and O : A =
∏

iAi → ∆(Z) is the outcome function. Given this game form, players play

an action profile a ∈ A simultaneously, and an outcome z realizes with probability O(z | a). A

preference structure consists of (Ti, πi)i∈I , where each player i has a non-empty finite set Ti of

possible types, T−i =
∏

j 6=i Tj , and πi : Ti → PUi(T−i) assigns each type ti ∈ Ti with his preference

πi(ti) over F (T−i), the set of outcomes contingent on the other players’ types. We assume that

ex-post utility indices belong to a simplex Ui = conv{u1i , . . . , u
Ki
i }. As a special case, if |Ti| = 1 for

all i ∈ I, then a preference structure specifies a utility index ui ∈ Ui (or a preference over lotteries)

for each player i. We call a pair of a game form and a preference structure a game in preference

form or a preference-form game, and denote it by Γ = (I, Z, (Ai, Ti, Ui, πi)i∈I , O).10

10In Section 3.6, we extend our framework to explicitly incorporate “states” that are relevant for outcomes or

preferences.

9



3.2 Equilibria

An equilibrium notion is defined as follows. Let σi : Ti → ∆(Ai) be a behavior strategy of player

i. Then each pair of player i’s action ai ∈ Ai and his opponents’ behavior strategies σ−i = (σj)j 6=i

induces an act O(· | ai, σ−i) over T−i, where an outcome z realizes with probability O(z | ai, σ−i) =∑
a−i

O(z | ai, a−i)
∏

j 6=i σj(aj | tj) contingent on t−i. We say that σ = (σi)i∈I is a (Bayes-Nash)

equilibrium of Γ if, for any i ∈ I and ti ∈ Ti, if σi(ai | ti) > 0, then πi(ti) weakly prefers O(· | ai, σ−i)

to O(· | a′i, σ−i) for any a′i ∈ Ai.

3.3 Preference Rationalizability

In a preference-form game Γ = (I, Z, (Ai, Ti, Ui, πi)i∈I , O), we define preference rationalizability as

follows:

PR0
i (ti) = Ai,

PRn+1
i (ti) =


ai ∈ Ai

∣∣∣∣∣∣∣∣∣∣∣

there exists �i ∈ PUi(A−i × T−i) s.t.

(i) (a−i, t−i) is �i-non-null ⇒ a−i ∈ PRn
−i(t−i)

(ii) mrgT−i
�i = πi(ti)

(iii) O(· | ai, ·) �i O(· | a′i, ·) for any a′i ∈ Ai


,

PRi(ti) =
∞⋂
n=0

PRn
i (ti),

where mrgT−i
�i ∈ PUi(T−i) denotes the marginal preference of �i ∈ PUi(A−i × T−i), which is the

restriction of �i to outcomes that are contingent on T−i but constant along the A−i dimension.

Equivalently, if �i is represented by qi ∈ ∆(A−i × T−i) and {ui(· | a−i, t−i)}a−i,t−i ⊂ Ui, then the

marginal preference mrgT−i
�i is the preference represented by the marginal belief

q̄i(t−i) :=
∑
a−i

qi(a−i, t−i)

and the average utility indices

ūi(z | t−i) :=
∑
a−i

qi(a−i, t−i)

q̄i(t−i)
ui(z | a−i, t−i).

We say that any element in PRi(ti) is (interim) preference rationalizable for type ti. We also write

PRi(ti; Γ) to emphasize the underlying game Γ.

In words, each type ti of player i rationalizes his action ai by forming a preference �i over

outcomes contingent on the opponents’ actions and types. Condition (i) requires that the preference

�i responds to outcomes only on the opponents’ action-type pairs that have survived in the previous
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step of iteration. Condition (ii) requires that �i is consistent with type ti’s own preference over

outcomes contingent on the opponents’ types. Condition (iii) requires that ai is optimal given �i.

As long as these conditions are satisfied, different players and different types (of the same player)

can have different preferences. Also, even the same type can use different preferences to rationalize

different actions.

In this definition, notice that type ti’s utility index and the opponents’ actions may be correlated

with each other. To understand this correlation, suppose that nature chooses an implicitly defined

state, which affects type ti’s utility index, or for short, nature chooses type ti’s utility index. Then

we treat the nature as another player, and apply the idea of correlated rationalizability to this

environment. This is why we allow for type ti to believe that the opponents’ actions and the

nature’s action are correlated through some channels outside of our explicit model.

We can rewrite the iteration process using a variant of behavior strategies. Namely, type ti

rationalizes his action ai by “correlated” behavior strategy σ−i : T−i → ∆(A−i) and “action-type-

contingent” utility indices {vi(· | a−i, t−i)}a−i,t−i ⊂ Ui such that

(i′) σ−i(a−i | t−i) > 0 ⇒ a−i ∈ PRn
−i(t−i),

(ii′)
∑

a−i
σ−i(a−i | t−i)vi(z | a−i, t−i) = ui(z | ti, t−i) for any t−i ∈ T−i and z ∈ Z,

(iii′) ai maximizes
∑

a−i,t−i,z
qi(t−i | ti)σ−i(a−i | t−i)O(z | a′i, a−i)vi(z | a−i, t−i),

where πi(ti) is represented by qi(· | ti) ∈ ∆(T−i) and {ui(· | ti, t−i)}t−i ⊂ Ui. Here, if |I| ≥ 3, then

a correlated behavior strategy σ−i(a−i | t−i) is a more permissive notion than a profile (σj)j 6=i of

“independent” behavior strategies σj : Tj → ∆(Aj), as it allows for correlation of action profile a−i

across the opponents, and is contingent on type profile t−i. Also, utility index vi(· | a−i, t−i) may

depend on the opponents’ action-type profile (a−i, t−i). Thus, from type ti’s perspective, it is as if

the opponents observe each other’s type t−i and play an action profile a−i in a coordinated manner,

and then the nature chooses a utility index for type ti after observing a−i.

The following conditions are also equivalent: there exist “utility-index-contingent” behavior

strategies σk
−i : T−i → ∆(A−i) for k = 1, . . . ,Ki such that

(i′′) σk
−i(a−i | t−i) > 0 for some k = 1, . . . ,Ki ⇒ a−i ∈ PRn

−i(t−i),

(ii′′) ai maximizes
∑

a−i,t−i,z,k
qi(t−i | ti)σk

−i(a−i | t−i)O(z | a′i, a−i)λ
k
i (ti, t−i)u

k
i (z),

where λk
i (ti, t−i) is the coefficient of uki to express ui(· | ti, t−i) as a convex combination of extUi =

{u1i , . . . , u
Ki
i }. In this expression, σk

−i depends not only on the opponents’ type profile t−i, but also

player i’s own utility index uki . Thus, we can interpret this expression similarly to the previous one,
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but along the opposite time line: it is as if the nature chooses a utility index uki for type ti, and

then the opponents of player i play a correlated action profile contingent on the nature’s choice.

One can also use duality and define rationalizability by eliminating dominated actions itera-

tively. Namely, type ti eliminates action ai if there exists αi ∈ ∆(Ai) such that O(· | αi, ·) �i O(· |
ai, ·) for any �i ∈ PUi(A−i × T−i) that satisfies

(i) (a−i, t−i) is �i-non-null ⇒ a−i ∈ PRn
−i(t−i),

(ii) mrgT−i
�i = πi(ti).

Two comments are in order regarding the (in)dependency of preference rationalizability on

utility index restrictions (Ui)i∈I . First, note that sets of preferences, P
Ui(T−i) and PUi(A−i×T−i),

are independent of cardinal utility representations, i.e., invariant to positive affine transformations

of elements of Ui. Thus the set of preference rationalizable actions is also independent of cardinal

utility representations.

Second, however, the set of preference rationalizable actions may vary if utility index restric-

tions are changed in other ways. For example, preference rationalizability becomes more permissive

if each Ui is expanded to Vi ⊇ Ui. One might use this fact to argue against preference rational-

izability. We, however, think that restrictions (Ui)i∈I are an indispensable aspect of the strategic

environment, and our preference-form games allow the modeler to state these restrictions explicitly.

The modeler can take Ui as a singleton if she is certain about player i’s utility index; otherwise,

she should take a relatively large Ui to allow for various unmodelled factors that can affect player

i’s utility indices.

3.4 Two Examples

The following two examples illustrate how to construct preference-form games, and how to apply

preference rationalizability to these games.

Example 6 (Winner’s Curse). The first example is a discretized version of common-value auction,

where we discuss winner’s curse that arises from correlation between a bidder’s valuation and the

opponent’s bid. Unlike the conventional approach, however, we do not specify such correlation

explicitly; instead, we let the solution concept—preference rationalizability—capture various forms

of correlation that are implicit in the model.

There are two bidders in an action. Each bidder can bid high (action H) or low (L). If both bid

low, they get nothing (outcome z0); if bidder i bids high while bidder j 6= i bids low, then bidder i

gets an object and pays a fixed price (zi); if both bid high, the winner is determined by a fair coin

12



toss. The game form is given by

O =

H L

H (12 , z1;
1
2 , z2) z1

L z2 z0

.

We impose restrictions on utility indices such that for each bidder i, ui(z0) = ui(zj) = 0 and

ui(zi) ∈ [−v, v], where v ≥ 1. We consider a simple preference structure, where each bidder i has

a single type Ti = {ti}, and his preference is represented by ui such that ui(z0) = ui(zj) = 0 and

ui(zi) = 1. It is easy to see that H is preference rationalizable. Then under what condition is L

also preference rationalizable? Suppose that bidder i believes that his own valuation is positively

correlated with the opponent’s bid so that with probability (v + 1)/(2v), “bidder j bids H and

ui(zi | H) = v”, and with probability (v − 1)/(2v), “bidder j bids L and ui(zi | H) = −v”. This

belief over j’s bids and i’s own utility indices represents i’s preference, which rationalizes L for

bidder i if and only if

0 ≥ v + 1

2v
× 1

2
× v +

v − 1

2v
× (−v),

i.e., v ≥ 3. In this case, bidder i bids L because he is afraid of suffering from winner’s curse when

he wins the object. Conversely, if 1 ≤ v < 3, then no correlation structure between bidder i’s

valuation and the opponent’s bid can prevent him from playing H.

Example 7 (Bilateral Trade). Consider the following game form:

O =

yes no

yes z∗ z1

no z2 z0

.

We interpret this as a trading problem, where players are considering a trade where each player

delivers an object—of a known value to him but perhaps an unknown value to the other player—to

the other. Thus actions correspond to say yes or no to a proposed trade. Outcome z∗ corresponds

to the full trade taking place, and z0 corresponds to “no trade”. Outcome zi is a situation where

player i (who said yes) sends his object but—because the other agent says no—it is destroyed.

Each player i is restricted to have utility indices ui such that ui(z0) = ui(zj) = 0, ui(zi) = −1,

and ui(z
∗) ∈ [−v, v] with v ≥ 0. Thus the cost of sending an object is 1, and getting an object

from the other player has a value between −v + 1 and v + 1.

Fix a preference type space (Ti, πi)
2
i=1. We can represent type ti’s preference πi(ti) by a combi-

nation of the probability qi(T
′
j | ti) of T ′

j ⊆ Tj given ti and the expected utility ui(z
∗ | ti, T ′

j) of z
∗

conditional on ti and T ′
j ⊆ Tj .

13



Now we can ask what actions are preference rationalizable for different types. Clearly, N ∈
PRi(ti) for any ti ∈ Ti. Let T

n
i = {ti ∈ Ti | Y ∈ PRn

i (ti)}. Then

Tn+1
i = {ti ∈ Ti | qi(Tn

j | ti)ui(z∗ | ti, Tn
j ) ≥ 1− qi(T

n
j | ti)},

if 0 ≤ v ≤ 1, and

Tn+1
i =

{
ti ∈ Ti | qi(Tn

j | ti)
v + ui(z

∗ | ti, T ′
j)

2
≥ 1− qi(T

n
j | ti)

v + ui(z
∗ | ti, T ′

j)

2v

}
if v > 1. To see this, in the case of 0 ≤ v ≤ 1, we have Y ∈ PRn+1

i (ti) if and only if type ti

prefers saying yes to no by conjecturing that tj says yes if tj ∈ Tn
j and no if tj /∈ Tn

j . In contrast,

in the case of v > 1, we have Y ∈ PRn+1
i (ti) if and only if type ti prefers saying yes to no by

conjecturing that with probability (v + ui(z
∗ | ti, T ′

j))/(2v), “player j says yes if tj ∈ Tn
j and no if

tj /∈ Tn
j , and ui(z

∗) = v”, and with probability (v − ui(z
∗ | ti, T ′

j))/(2v), “player j always says no

and ui(z
∗) = −v”.

Thus, intuitively, trade takes place if and only if, for each player, (a) trade has a non-negative

expected value, (b) trade has a non-negative expected value conditional on trade having a non-

negative expected value for the other player, (c) trade has positive expected value conditional on

(b) being true for the other player, and so on... However, the highest expected value of trade is

computed differently between the case of 0 ≤ v ≤ 1 and the case of v > 1. In particular, in the case

of v > 1, trade can take place as an outcome of preference rationalizable actions even if it does not

in equilibrium.

3.5 Redundant Types

The definition of preference rationalizability respects the “small world” view in the sense that a

preference structure is not understood to capture everything in the world. Rather, the modeler

admits that there may be always states and types that are implicit in the model but relevant for

players’ preferences.

As a consequence of this “small world” view, we can show that “enlarging” the model does not

affect the set of preference rationalizable actions. More formally, consider two preference structures

(Ti, πi)i∈I and (T̂i, π̂i)i∈I with the same simplex restrictions (Ui)i∈I . We say that a profile (ϕi)i∈I

of mappings ϕi : Ti → T̂i is preference-preserving if for any i ∈ I and ti ∈ Ti,

∀f, f ′ ∈ F (T̂−i), π̂i(ϕi(ti)) prefers f to f ′ ⇔ πi(ti) prefers f ◦ ϕ−i to f ′ ◦ ϕ−i,

where f ◦ ϕ−i is an act over T−i that assigns a lottery f((ϕj(tj))j 6=i) contingent on t−i, and f ′ ◦
ϕ−i is defined similarly. If these preference-preserving mappings are not one-to-one, then we can
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see a preference-form game Γ̂ = (I, Z, (Ai, T̂i, Ui, π̂i)i∈I , O) as a “smaller” model than another

preference-form game Γ = (I, Z, (Ai, Ti, Ui, πi)i∈I , O).

Proposition 1. If (Ui)i∈I are simplex restrictions and (ϕi)i∈I are preference-preserving mappings

from (Ti, πi)i∈I to (T̂i, π̂i)i∈I , then PRi(ti; Γ) = PRi(ϕi(ti); Γ̂) for any i ∈ I and ti ∈ Ti.

Proof. By induction, suppose PRn
i (ti; Γ) = PRn

i (ϕi(ti); Γ̂) for any i ∈ I and ti ∈ Ti. Then fix

any i ∈ I and ti ∈ Ti. For any ai ∈ PRn+1
i (ti; Γ), there exists �i ∈ PUi(A−i × T−i) such that

(i) a−i ∈ PRn
−i(t−i; Γ) whenever (a−i, t−i) is �i-non-null, (ii) mrgT−i

�i = πi(ti), and (iii) O(· |
ai, ·) �i O(· | a′i, ·) for any a′i ∈ Ai. Let �̂i ∈ PUi(A−i × T̂−i) be given by

∀f, f ′ ∈ F (A−i × T̂−i), f �̂i f
′ ⇔ f ◦ (idA−i × ϕ−i) �i f

′ ◦ (idA−i × ϕ−i).

Then (i) by the induction hypothesis, we have a−i ∈ PRn
−i(t̂−i; Γ̂) whenever (a−i, t̂−i) is �̂i-non-null,

(ii) by the definition of preference-preserving mappings, we have mrgT−i
�̂i = π̂i(t̂i), and (iii)

O(· | ai, ·) �̂i O(· | a′i, ·) for any a′i ∈ Ai. Thus ai ∈ PRn+1
i (ϕi(ti); Γ̂).

Conversely, fix any i ∈ I and ti ∈ Ti. Let πi(ti) be represented by qi(· | ti) ∈ ∆(T−i) and

{ui(· | ti, t−i)}t−i∈T−i ⊂ Ui, and π̂i(t̂i) by q̂i(· | t̂i) ∈ ∆(T̂−i) and {ûi(· | t̂i, t̂−i)}t̂−i∈T̂−i
⊂ Ui. Also

let ui(· | ti, t−i) and ûi(· | t̂i, t̂−i) be expressed as convex combinations of extUi: ui(· | ti, t−i) =∑
k λ

k
i (ti, t−i)u

k
i and ûi(· | t̂i, t̂−i) =

∑
k λ̂

k

i (t̂i, t̂−i)u
k
i . Since ϕ−i preserves player i’s preferences

πi(ti) and π̂i(ϕi(ti)) and Ui is a simplex, for any t̂−i ∈ T̂−i and k = 1, . . . ,Ki, we have

q̂i(t̂−i | ϕi(ti)) =
∑

t−i∈ϕ−1
−i (t̂−i)

qi(t−i | ti),

q̂i(t̂−i | ϕi(ti))λ̂
k

i (ϕi(ti), t̂−i) =
∑

t−i∈ϕ−1
−i (t̂−i)

qi(t−i | ti)λk
i (ti, t−i). (2)

For any ai ∈ PRn+1
i (ϕi(ti); Γ̂), there exist σ̂k

−i : T̂−i → ∆(A−i) for k = 1, . . . ,Ki such that (i′′) if

σ̂k
−i(a−i | t̂−i) > 0 for some k, then a−i ∈ PRn

−i(t̂−i; Γ̂), and (ii′′) ai maximizes∑
a−i,t̂−i,z,k

q̂i(t̂−i | ϕi(ti))σ̂
k
−i(a−i | t̂−i)O(z | a′i, a−i)λ̂

k

i (ti, t̂−i)u
k
i (z).

Let

σk
−i(a−i | t−i) = σ̂k

−i(a−i | ϕ−i(t−i))

for any a−i ∈ A−i, t−i ∈ T−i, and k = 1, . . . ,Ki. Then (i′′) if σk
−i(a−i | t−i) = σ̂k

−i(a−i | ϕ−i(t−i)) >
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0, then a−i ∈ PRn
−i(ϕ−i(t−i); Γ̂) = PRn

−i(t−i; Γ), and (ii′′) ai maximizes∑
a−i,t̂−i,z,k

q̂i(t̂−i | ϕi(ti))σ̂
k
−i(a−i | t̂−i)O(z | a′i, a−i)λ̂

k

i (ti, t̂−i)u
k
i (z)

=
∑

a−i,t̂−i,z,k

∑
t−i∈ϕ−1

−i (t̂−i)

qi(t−i | ti)σk
−i(a−i | t−i)O(z | a′i, a−i)λ

k
i (ti, t−i)u

k
i (z)

=
∑

a−i,t−i,z,k

qi(t−i | ti)σk
−i(a−i | t−i)O(z | a′i, a−i)λ

k
i (ti, t−i)u

k
i (z)

by (2). Thus ai ∈ PRn+1
i (ti; Γ).

Proposition 1 is analogous to Dekel, Fudenberg and Morris (2007, Proposition 1), who show

that in an incomplete-information game with payoff-relevant states, the set of interim correlated

rationalizable actions is invariant to belief-preserving mappings, and hence depends only on hi-

erarchies of beliefs (beliefs and higher-order beliefs) over payoff-relevant states. Indeed, one can

derive Proposition 1 from Dekel, Fudenberg and Morris (2007, Proposition 1), given that preference

rationalizability in a preference-form game is equivalent to interim correlated rationalizability in

an incomplete-information game with appropriately chosen payoff-relevant states (as shown in our

Proposition 4 below).

3.6 Explicit States

We can extend our framework by incorporating states that influence outcomes or preferences. For-

mally, let Ω be a non-empty finite set of states. An Ω-based game form consists of ((Ai)i∈I ,Ω, O)

with O : A× Ω → ∆(Z), and an Ω-based preference structure consists of (Ti, πi)i∈I with πi : Ti →
PUi(T−i×Ω). An Ω-based preference-form game is then given by ΓΩ = (I, Z,Ω, (Ai, Ti, Ui, πi)i∈I , O).

Note that Ω includes not only states that affect outcomes but also those that affect preferences.

It is necessary to incorporate states that influence outcomes to reflect the modeler’s knowledge of

the physical structure of the game. In the introduction, we made an argument for not using states

that are not known to the players in modelling preference uncertainty. However, we allow for the

possibility here, and later show that adding states that affect only preferences does not affect the

set of preference rationalizable actions.
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Given this preference-form game, we can define preference rationalizability by

PR0
i (ti) = Ai,

PRn+1
i (ti) =


ai ∈ Ai

∣∣∣∣∣∣∣∣∣∣∣

there exists �i ∈ PUi(A−i × T−i × Ω) s.t.

(i) (a−i, t−i, ω) is �i-non-null for some ω ∈ Ω ⇒ a−i ∈ PRn
−i(t−i)

(ii) mrgT−i×Ω�i = πi(ti)

(iii) O(· | ai, ·, ·) �i O(· | a′i, ·, ·) for any a′i ∈ Ai


,

PRi(ti) =

∞⋂
n=0

PRn
i (ti).

In this formulation, the modeler can incorporate as many states as she wishes as long as she

knows how these states affect outcomes and players’ preferences. However, those states affect the

set of preference rationalizable actions only to the extent that they affect outcomes. If states

affect only preferences and do not affect outcomes, then since such states are already incorporated

implicitly in the solution concept, they do not affect the set of preference rationalizable actions.

More formally, let ΓΩ = (I, Z,Ω, (Ai, Ti, Ui, πi)i∈I , O) and ΓΩ̂ = (I, Z, Ω̂, (Ai, Ti, Ui, π̂i)i∈I , Ô) be

preference-form games with uncertainty Ω and Ω̂, respectively. We say that Ω is redundant in Ω̂ if

there exists a mapping ϕ0 : Ω → Ω̂ such that O(· | a, ω) = Ô(· | a, ϕ0(ω)) for any a ∈ A and ω ∈ Ω,

and ϕ0 is preference-preserving, i.e., for any i ∈ I and ti ∈ Ti,

∀f, f ′ ∈ F (T−i × Ω̂), π̂i(ti) prefers f to f ′ ⇔ πi(ti) prefers f ◦ (idT−i × ϕ0) to f ′ ◦ (idT−i × ϕ0),

where idT−i is the identity mapping on T−i.

Proposition 2. If (Ui)i∈I are simplex restrictions and Ω is redundant in Ω̂, then PRi(ti; Γ
Ω) =

PRi(ti; Γ
Ω̂) for any i ∈ I and ti ∈ Ti.

Proof. This follows from applying Proposition 1 to the following two games with dummy player 0

(but without uncertainty): in the first game, the dummy player has the set of actions equal to Ω′

and the set of types equal to Ω, and each type ω ∈ Ω strictly prefers playing action ϕ0(ω) ∈ Ω′;

in the second game, both the set of actions and the set of types are equal to Ω′, and each type ω′

strictly prefers playing action ω′.

4 Relationship with Payoff-Form Games

In this section, we compare our approach and the conventional one that uses games in payoff form.

The main issue is that for a given preference-form game, one can construct (at least) two different

17



payoff-form games, depending on how we specify payoff-relevant states. We show that rationaliz-

ability in one payoff-form game is equivalent to preference rationalizability in the preference-form

game, but rationalizability in the other payoff-form game is more restrictive.

4.1 A Payoff-Form Game, Equilibria and ICR

Recall that a conventional incomplete-information game is given by G = (I, (Ai,Θi, gi, Ti, µi)i∈I),

where Θi is a non-empty finite set of states that are relevant for player i’s payoffs, gi : A×Θi → R is

player i’s state-dependent payoff function, and (Ti, µi)i∈I is an information structure with µi : Ti →
∆(T−i × Θi).

11 To emphasize the difference from a game in preference form, we call G a game in

payoff form or a payoff-form game.

A profile (σi)i∈I of behavior strategies σi : Ti → ∆(Ai) is an equilibrium of G if, for any i ∈ I

and ti ∈ Ti, if σi(ai | ti) > 0, then ai maximizes
∑

t−i,θi
µi(t−i, θi | ti)gi(a′i, σ−i(t−i), θi).

Dekel, Fudenberg and Morris (2007) introduce the notion of interim correlated rationalizability

(ICR) as follows:

ICR0
i (ti) = Ai,

ICRn+1
i (ti) =


ai ∈ Ai

∣∣∣∣∣∣∣∣∣∣∣

there exists νi ∈ ∆(A−i × T−i ×Θi) s.t.

(i) νi(a−i, t−i, θi) > 0 for some θi ⇒ a−i ∈ ICRn
−i(t−i)

(ii)
∑

a−i
νi(a−i, t−i, θi) = µi(t−i, θi | ti) for all t−i, θi

(iii) ai maximizes
∑

a−i,t−i,θi
νi(a−i, t−i, θi)gi(a

′
i, a−i, θi)


,

ICRi(ti) =

∞⋂
n=0

ICRn
i (ti).

We also write ICRi(ti;G) to emphasize the underlying game G.

4.2 Two Constructions of Payoff-Form Games

Given a game in preference form Γ = (I, Z, (Ai, Ti, Ui, πi)i∈I , O), there are at least two ways to

construct games in payoff form. One way is to set Θi = T for each player i. In the example

discussed in the introduction, where there was a singleton type space, this minimal corresponds to

a complete information payoff-form game. For each type ti ∈ Ti, whose preference πi(ti) ∈ PUi(T−i)

is represented by belief qi(· | ti) ∈ ∆(T−i) and utility indices {ui(· | ti, t−i)}t−i∈T−i ⊂ Ui, we define

11Strictly speaking, our definition of incomplete-information games is slightly different from Dekel, Fudenberg and

Morris (2007), where they use a single “public” set Θ without subscripts to capture payoff-relevant states to all

players.
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player i’s state-dependent payoff function gTi : A× T → R by

gTi (a, (ti, t−i)) =
∑
z∈Z

O(z | a)ui(z | ti, t−i)

and his beliefs µT
i : Ti → ∆(T−i × T ) by

µT
i (t−i, t

′ | ti) =

qi(t−i | ti) if t′ = (ti, t−i),

0 if t′ 6= (ti, t−i).

We denote this payoff-form game by GT .

Another way is to set Θi = extUi = {u1i , . . . , u
Ki
i } for each player i. This more expansive version

corresponded to an incomplete information payoff-form game in the example in the introduction.

Then we define each player’s state-dependent payoff function gi : A× extUi → R by

gUi (a, u
k
i ) =

∑
z∈Z

O(z | a)uki (z)

and his beliefs µi : Ti → ∆(T−i × extUi) by

µU
i (t−i, u

k
i | ti) = qi(t−i | ti)λk

i (ti, t−i),

where λk
i (ti, t−i) is the coefficient of uki to express ui(· | ti, t−i) as a convex combination of

{u1i , . . . , u
Ki
i }. We denote this payoff-form game by GU .

At the first glance, both games GT and GU are similar to the preference-form game Γ. In fact,

Γ, GT , and GU have the same set of equilibria. Let E(Γ) be the set of equilibria in preference-form

game Γ, and E(G) be the set of equilibria in payoff-form game G,

Proposition 3. E(GT ) = E(GU ) = E(Γ).

Proof. Note that for each ti ∈ Ti, ai ∈ Ai, and σ−i = (σj)j 6=i with σj : Tj → ∆(Aj), we have∑
t−i,t′

µT
i (t−i, t

′ | ti)gTi (ai, σ−i(t−i), t
′)

=
∑
t−i,z

qi(t−i | ti)O(z | ai, σ−i(t−i))ui(z | ti, t−i)

=
∑

t−i,k,z

qi(t−i | ti)O(z | ai, σ−i(t−i))λ
k
i (ti, t−i)u

k
i (z)

=
∑
t−i,k

µU
i (t−i, u

k
i | ti)gUi (ai, σ−i(t−i), u

k
i ).

Thus type ti solves the same maximization problem in GT , GU and Γ.
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However, GT and GU may have different sets of ICR actions. In general, ICR in GT is more

restrictive than ICR in GU , which is equivalent to preference rationalizability in Γ.

Proposition 4. If (Ui)i∈I are simplex restrictions, then ICRi(ti;G
T ) ⊆ ICRi(ti;G

U ) = PRi(ti; Γ)

for any i ∈ I and ti ∈ Ti.

Proof. For the first part (set inclusion), by induction, suppose ICRn
i (ti;G

T ) ⊆ ICRn
i (ti;G

U ) for

any i ∈ I and ti ∈ Ti. Then for each i ∈ I, ti ∈ Ti, and ai ∈ ICRn+1
i (ti;G

T ), there exists

νTi ∈ ∆(A−i × T−i × T ) such that (i) a−i ∈ ICRn
−i(t−i;G

T ) if νTi (a−i, t−i, t
′) > 0 for some t′ ∈ T ,

(ii)
∑

a−i
νTi (a−i, t−i, t

′) = µT
i (t−i, t

′ | ti), and (iii) ai maximizes∑
a−i,t−i,t′

νTi (a−i, t−i, t
′)gTi (a

′
i, a−i, t

′) =
∑

a−i,t−i

νTi (a−i, t−i, (ti, t−i))g
T
i (a

′
i, a−i, (ti, t−i)).

Let νUi ∈ ∆(A−i × T−i × extUi) be given by

νUi (a−i, t−i, u
k
i ) = νTi (a−i, t−i, (ti, t−i))λ

k
i (ti, t−i),

where λk
i (ti, t−i) is the coefficient of uki to represent ui(· | ti, t−i) as a convex combination of

{u1i , . . . , u
Ki
i }. Then (i) a−i ∈ ICRn

−i(t−i;G
T ) ⊆ ICRn

−i(t−i;G
U ) if νUi (a−i, t−i, u

k
i ) > 0 for some

uki ∈ extUi, (ii)
∑

a−i
νUi (a−i, t−i, u

k
i ) =

∑
a−i

νTi (a−i, t−i, (ti, t−i))λ
k
i (ti, t−i) = µT

i (t−i, (ti, t−i) |
ti)λ

k
i (ti, t−i) = qi(t−i | ti)λk

i (ti, t−i) = µU
i (t−i, u

k
i | ti), and (iii) ai maximizes∑

a−i,t−i

νTi (a−i, t−i, (ti, t−i))g
T
i (a

′
i, a−i, (ti, t−i))

=
∑

a−i,t−i,z

νTi (a−i, t−i, (ti, t−i))O(z | a′i, a−i)ui(z | ti, t−i)

=
∑

a−i,t−i,z,k

νTi (a−i, t−i, (ti, t−i))O(z | a′i, a−i)λ
k
i (ti, t−i)u

k
i (z)

=
∑

a−i,t−i,k

νUi (a−i, t−i, u
k
i )g

U
i (a

′
i, a−i, u

k
i ).

Thus ai ∈ ICRn+1
i (ti;G

U ).

The second part (set equality) follows from the isomorphisms between ∆(T−i × extUi) and

PUi(T−i) and between ∆(A−i × T−i × extUi) and PUi(A−i × T−i) when Ui is a simplex.

The next example shows that the set inclusion may be strict.

Example 8. Consider the following preference-form game Γ. There are two players I = {1, 2}
and three outcomes Z = {z1, z2, z3}. For each player i, his utility indices are restricted to Ui =

conv{u2, u3}, where (u2(z1), u
2(z2), u

2(z3)) = (0, 1, 0) and (u3(z1), u
3(z2), u

3(z3)) = (0, 0, 1). Each

20



player i has only one type Ti = {ti}, whose preference is represented by (ui(z1), ui(z2), ui(z3)) =

(0, 1/2, 1/2). The players play the following game form:

O =

a2 a′2

a1 z3 (12 , z1;
1
2 , z2)

a′1 (12 , z1;
1
2 , z2) z1

.

Given such Γ, we define GT as a complete-information game with the following payoffs

gT (·, t1, t2) =
a2 a′2

a1
1
2 ,

1
2

1
4 ,

1
4

a′1
1
4 ,

1
4 0, 0

.

It is easy to see that ai is the unique rationalizable action for player i.

On the other hand, GU is an incomplete-information game, where Θ1 = Θ2 = {u2, u3}, payoffs
are given by

gU =

(θ1, θ2) = (u2, u2) a2 a′2

a1 0, 0 1
2 ,

1
2

a′1
1
2 ,

1
2 0, 0

(u2, u3) a2 a′2

a1 0, 1 1
2 , 0

a′1
1
2 , 0 0, 0

(u3, u2) a2 a′2

a1 1, 0 0, 12

a′1 0, 12 0, 0

(u3, u3) a2 a′2

a1 1, 1 0, 0

a′1 0, 0 0, 0

,

and each player i believes that θi = u2 or u3 with equal probability. Then player i can rationalize

a′i by the conjecture νi ∈ ∆(Aj × Θi) such that νi(aj , u
2) = νi(a

′
j , u

3) = 1/2. In fact, both ai and

a′i are ICR actions for player i.

As illustrated by the above example, ICR depends on how we specify state spaces. In game GT ,

it is (somewhat implicitly) assumed that type profiles capture everything that is relevant for utility

indices. That is, conditional on t−i, type ti’s utility index is given by ui(· | ti, t−i) without any

further uncertainty. On the other hand, in game GU , even after type profile (ti, t−i) is fixed, there

may remain uncertainty about type ti’s utility index, which can be correlated with the opponents’

actions a−i to the extent that each realization of the utility index belongs to Ui, and that the

“average” of the utility index is equal to ui(· | ti, t−i).
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4.3 A Treatment of Explicit States

Given a preference-form game ΓΩ = (I, Z,Ω, (Ai, Ti, Ui, πi)i∈I , O) with explicit states Ω, we can

define a payoff-form game GU,Ω by setting Θi = extUi × Ω, gU,Ωi : A× extUi × Ω → R by

gU,Ωi (a, uki , ω) =
∑
z∈Z

O(z | a, ω)uki (z)

and µi : Ti → ∆(T−i × extUi × Ω) by

µU,Ω
i (t−i, u

k
i | ti) = qi(t−i, ω | ti)λk

i (ti, t−i, ω),

where πi(· | ti) is represented by belief qi(· | ti) ∈ ∆(T−i×Ω) and utility indices {ui(· | ti, t−i, ω)}t−i∈T−i,ω∈Ω ⊂
Ui, and λk

i (ti, t−i, ω) is the coefficient of uki to express ui(· | ti, t−i, ω) as a convex combination of

{u1i , . . . , u
Ki
i }.

We can show that ICR in GU,Ω is equivalent to preference rationalizability in ΓΩ.

Proposition 5. If (Ui)i∈I are simplex restrictions, then ICRi(ti;G
U,Ω) = PRi(ti; Γ

Ω) for any i ∈ I

and ti ∈ Ti.

Proof. Similarly to the second part of Proposition 4, it follows from the isomorphisms between

∆(T−i×extUi×Ω) and PUi(T−i×Ω) and between ∆(A−i×T−i×extUi×Ω) and PUi(A−i×T−i×Ω)

when Ui is a simplex.

Thus, if there is uncertainty in the outcome function, then our approach of using an Ω-based

preference-form game is equivalent to using the corresponding payoff-form game with Θi = extUi×
Ω. The choice of Ω is less problematic than that of Θi, as the relationship between action profiles

and outcomes is more “objective” than players’ preferences over outcomes.

4.4 A Remark on Singleton Preference Structures

If |Ti| = 1 for all i ∈ I, then a preference-form game simply consists of a game form ((Ai)i∈I , O)

and each player i’s preference over lotteries, represented by a utility index ui ∈ Ui. In this case, the

corresponding payoff-form game GT is indeed a complete-information game, and ICR is equivalent

to correlated rationalizability. On the other hand, the other payoff-form game GU still contains

incomplete information (unless in addition to |Ti| = 1, we have |Ui| = 1 for every i ∈ I). Thus the

distinction between complete- and incomplete-information games in payoff form is not obvious and

requires some care from the viewpoint of preference-form games.
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5 Non-Simplex Restrictions

We can easily extend the definitions of PU (X), preference-form games and preference rationalizabil-

ity to cases with non-simplex restrictions (Ui)i∈I by following their definitions almost verbatim.12

In this section, we discuss whether and how our results extend to such cases.

To simplify our expositions, except when we discuss redundant states in Proposition 6, we

assume away explicit states Ω. Extensions to cases with such explicit states are immediate.

5.1 Convex Polytope Restrictions

We begin with the slightest deviation from the simplex assumption, and consider cases where

each Ui is a convex polytope, i.e., a convex hull of finitely many utility indices {u1i , . . . , u
Ki
i }, but

u2i − u1i , . . . , u
Ki
i − u1i are not linearly independent. (Without loss of generality, we assume that all

uki are extreme points of Ui.) For example, the “square” restriction in Example 5 is not a simplex,

but a convex polytope.

Then we can show that Propositions 1 and 2 hold in one direction of set inclusion.

Proposition 6. If (Ui)i∈I are convex polytope restrictions and (ϕi)i∈I are preference-preserving

mappings from (Ti, πi)i∈I to (T̂i, π̂i)i∈I , then PRi(ti; Γ) ⊆ PRi(ϕi(ti); Γ̂) for any i ∈ I and ti ∈ Ti;

similarly, if Ω is redundant in Ω′, then PRi(ti; Γ
Ω) ⊆ PRi(ti; Γ

Ω̂) for any i ∈ I and ti ∈ Ti.

Proof. These results follow since the first half of the proof of Proposition 1 does not rely on the

simplex assumption.

The following example shows that the other direction of set inclusion does not hold for redundant

types (the first half of Proposition 6). A similar counterexample can be constructed for redundant

states (the second half).

Example 9. Suppose that I = {1, 2} and Z = {z1, z2, z3, z4}. For each k ⊆ {2, 3, 4},

uk(zl) =

0 if l /∈ k,

1 if l ∈ k.

Player 1’s utility indices are restricted to the “square” U1 = conv{u{2}, u{2,3}, u{2,4}, u{2,3,4}}, i.e.,
U1 is the set of utility indices u1 such that u1(z1) = 0, u1(z2) = 1, and u1(z3), u1(z4) ∈ [0, 1]. Player

12An exception is one of the equivalent definitions of preference rationalizability that uses utility-index-contingent

behavior strategies satisfying (i′′) and (ii′′), where λk
i (ti, t−i) is not uniquely defined if Ui is not a simplex.
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2 has a unique utility index U2 = {u{2}}. Consider the following game form:

O =

a2 a′2

a1 z3 z4

a′1 (13 , z1;
2
3 , z2) (13 , z1;

2
3 , z2)

Suppose that in a “smaller” preference structure (T̂i, π̂i)i=1,2, each player has one type T̂i = {t̂i},
player 1’s preference is represented by the center ū of U1 such that (ū(z1), ū(z2), ū(z3), ū(z4)) =

(0, 1, 1/2, 1/2), and player 2’s preference is represented by u{2}. In this preference-form game Γ̂,

all actions are preference rationalizable. To see this, note that player 1 can rationalize a1 by

conjecturing that with probability 1/2, “player 2 plays a2 and player 1’s preference is represented

by u{2,3}”, and with the remaining probability, “player 2 plays a′2 and player 1’s preference is

represented by u{2,4}”. Player 1 can also rationalize a′1 by conjecturing that player 2 plays a2 for

sure. Player 2 is indifferent between a2 and a′2.

Now consider a “larger” preference-form game Γ with preference structure (Ti, πi)i=1,2, where

T1 = {t1} and T2 = {t2, t′2}, player 1 believes that with probability 1/2, “player 2’s type is t2 and

player 1’s preference is represented by u{2}”, and with the remaining probability, “player 2’s type

is t′2 and player 1’s preference is represented by u{2,3,4}”, and player 2’s preference is represented

by u{2} for both types t2 and t′2. Then although ϕ1(t1) = t̂1 and ϕ2(t2) = ϕ2(t
′
2) = t̂2 are

preference-preserving mappings from (Ti, πi)i=1,2 to (T̂i, π̂i)i=1,2, player 1 cannot rationalize a1 in

Γ.

Similarly, without the simplex assumption, the relationship between preference-form games

and payoff-form games becomes weak. In particular, given a preference-form game Γ, we cannot

uniquely define a payoff-form game GU with Θi = extUi. It is because each ui(· | ti, t−i) can be

expressed as a convex combination of extUi in multiple ways, and hence player i’s belief

µU
i (t−i, u

k
i | ti) = qi(t−i | ti)λk

i (ti, t−i)

is not uniquely defined. Nevertheless, Proposition 4 holds in one direction of set inclusion. (The

same is true for Proposition 5.)

Proposition 7. If (Ui)i∈I are convex polytope restrictions, then ICRi(ti;G
T ) ⊆ ICRi(ti;G

U ) ⊆
PRi(ti; Γ) for any i ∈ I, ti ∈ Ti and any specification of GU .

Proof. The first set inclusion follows since the first half of the proof of Proposition 4 does not rely on

the simplex assumption. The second set inclusion follows from the (many-to-one) homomorphisms

from ∆(T−i × extUi) to PUi(T−i) and from ∆(A−i × T−i × extUi) to PUi(A−i × T−i) when Ui is a

convex polytope.
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ICR in GU may be strictly more restrictive than preference rationalizability in Γ for any spec-

ification of GU . This is because GU forces us to pick a particular expression of ui(· | ti, t−i) as a

convex combination of extUi, which imposes a restriction on conjectures that a type can use to

rationalize actions. The next example illustrates this point.

Example 10. The following example is an expansion of Example 9. Suppose that I = {1, 2} and

Z = {z1, z2, z3, z4, z5}. For each k ⊂ {2, 3, 4, 5}, uk denotes the utility index given by uk(zl) = 0 for

l /∈ k and uk(zl) = 1 for l ∈ k. Let U1 = conv{u{2}, u{2,3}, u{2,4}, u{2,3,4}}, i.e., U1 is the set of utility

indices u1 such that u1(z1) = u1(z5) = 0, u1(z2) = 1, and u1(z3), u1(z4) ∈ [0, 1]; let U2 = {u{5}}.
Consider the following game form:

O =

a2 a′2 a′′2

a1 (16 , z2;
1
3 , z3;

1
2 , z5) (12 , z1;

1
6 , z2;

1
3 , z3) (16 , z1;

1
6 , z2;

1
3 , z4;

1
3 , z5)

a′1 (23 , z1;
1
3 , z2) (16 , z1;

1
3 , z2;

1
2 , z5) (13 , z3;

1
3 , z4;

1
3 , z5)

a′′1 (37 , z2;
4
7 , z5) (37 , z2;

4
7 , z5) (47 , z1;

3
7 , z2)

.

Suppose that each player has one type: player 1’s preference is represented by the center ū of

U1 such that (ū(z1), ū(z2), ū(z3), ū(z4), ū(z5)) = (0, 1, 1/2, 1/2, 0), which is expressed as a convex

combination λ(u{2} + u{2,3,4}) + (1/2− λ)(u{2,3} + u{2,4}) for any λ ∈ [0, 1/2]; player 2’s preference

is represented by u{5}. In this preference-form game Γ, all actions are preference rationalizability.

To see this, note that player 1 can rationalize a1 by conjecturing that with probability 1/2, “player

2 plays a2 and player 1’s preference is represented by u{2,3}”, and with the remaining probability,

“player 2 plays a′′2 and player 1’s preference is represented by u{2,4}”. Similarly, player 1 can

rationalize a′1 by conjecturing that with probability 1/2, “player 2 plays a2 and player 1’s preference

is represented by u{2}”, and with the remaining probability, “player 2 plays a′′2 and player 1’s

preference is represented by u{2,3,4}”. Player 1 can rationalize a′′1 by conjecturing that player 2

plays a2 for sure. Player 2 can rationalize a2 and a′2 by conjecturing that player 1 plays a′′1 for sure.

Also, player 2 can rationalize a′′2 by conjecturing that player 1 randomizes between a1 and a′1 with

equal probabilities.

On the other hand, in any corresponding payoff-form gameGU with Θ1 = {u{2}, u{2,3}, u{2,4}, u{2,3,4}},
a′′1 is the unique ICR action for player 1. To see this, note that in GU , player 1 assigns equal proba-

bilities, denoted by λ ∈ [0, 1/2], on u{2} and on u{2,3,4}, and the complimentary probabilities 1/2−λ

on u{2,3} and on u{2,4}. Then in the first step of the iterative definition of ICR, a1 can be a best

response if and only if λ ≤ 3/14. On the other hand, a′1 can be a best response if and only if

λ ≥ 2/7. Therefore, for any λ, either a1 or a′1 must be eliminated. Since player 2 can rationalize a′′2

only by conjecturing that player 1 randomizes between a1 and a′1, in the second step of iteration,

a′′2 must be eliminated. Given this, in the third step, both a1 and a′1 are eliminated.
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5.2 No Restriction

Now we consider an extreme case where there is no restriction on utility indices. That is, a

preference structure is given by (Ti, πi)i∈I with πi : Ti → P (T−i), where P (X) denotes the set of all

preferences � over F (X) represented by

f, f ′ ∈ F (X), f � f ′ ⇔
∑
x,z

f(z | x)w(x, z) ≥
∑
x,z

f ′(z | x)w(x, z)

for some w : X × Z → R.13 In this case, type ti has a preference over F (T−i) represented by

w̄i : T−i × Z → R, and rationalizes an action by a preference over F (A−i × T−i) represented by

wi : A−i × T−i × Z → R such that
∑

a−i
wi(a−i, t−i, z) = w̄i(t−i, z).

We argue that if there is no restriction on utility indices, preference rationalizability is oddly

behaved. Indeed, the next example illustrates that the set of preference rationalizable actions

is not upper hemicontinuous with respect to the outcome function. To see why, note that even

if
∑

a−i
wi(a−i, t−i, z) = w̄i(t−i, z) is fixed, the marginal rate of substitution (wi(a−i, t−i, z) −

wi(a−i, t−i, z
′′))/(wi(a−i, t−i, z

′) − wi(a−i, t−i, z
′′)) is unbounded and depends on a−i almost arbi-

trarily.

Example 11. Suppose that I = {1, 2} and Z = {z1, z2}. Consider the following game form:

O =

a2 a′2

a1 z1 (p, z1; 1− p, z2)

a′1 (p, z1; 1− p, z2) z2

Suppose that each player has only one type, who strictly prefers z2 to z1. In this preference-form

game, ai is preference rationalizable if and only if p 6= 1/2. (a′i is always preference rationalizable.)

To see this, note that if p 6= 1/2, then player i forms a preference �i ∈ P ({aj , a′j}) represented

by wi(aj , z1) = wi(a
′
j , z1) = 0, wi(aj , z2) = (1 + p)/(2p − 1) and wi(a

′
j , z2) = (p − 2)/(2p − 1).

Since wi(aj , z2)+wi(a
′
j , z2) > wi(aj , z1)+wi(a

′
j , z1), �i is consistent with player i’s preference over

lotteries. Also, since wi(aj , z1) + pwi(a
′
j , z1) + (1 − p)wi(a

′
j , z2) > pwi(aj , z1) + (1 − p)wi(aj , z2) +

wi(a
′
j , z2), player i can rationalize ai.

If p = 1/2, then any preference �i ∈ P (Aj) prefers a′i to ai if �i is consistent with player

i’s preference over lotteries. It is because wi(aj , z1) + (wi(a
′
j , z1) + wi(a

′
j , z2))/2 < (wi(aj , z1) +

wi(aj , z2))/2 + wi(a
′
j , z2) whenever wi(aj , z2) + wi(a

′
j , z2) > wi(aj , z1) + wi(a

′
j , z1).

Also, we can show that the iteration procedure of preference rationalizability always stops in

the first step, and hence preference rationalizability for type ti depends only on the restriction of

πi(ti) to lotteries. These results are derived from the following dual characterization.

13One can interpret w(x, z) as the product of belief q(x) and utility u(z | x) although such decomposition is not

unique.
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Proposition 8. Suppose that Ui = RZ for any i ∈ I.

1. We have ai /∈ PR1
i (ti) if and only if there exists αi ∈ ∆(Ai) such that

(a) for any z ∈ Z, O(z | αi, a−i)−O(z | ai, a−i) is independent of a−i ∈ A−i, and

(b) πi(ti) strictly prefers O(· | αi, a−i) to O(· | ai, a−i) for some (and hence for all) a−i ∈
A−i.

2. PRi(ti) = PR1
i (ti).

3. If πi(ti) and πi(t
′
i) induce the same preference over lotteries, then PRi(ti) = PRi(t

′
i).

Proof. For part 1, the if direction is immediate. To show the only-if direction, let πi(ti) be rep-

resented by w̄i : T−i × Z → R. If ai /∈ PR1
i (ti), then there is no wi : A−i × T−i × Z → R such

that ∑
a−i

wi(a−i, t−i, z) = w̄i(t−i, z) for all t−i, z,∑
a−i,t−i,z

(O(z | ai, a−i)−O(z | a′i, a−i))wi(a−i, t−i, z) ≥ 0 for all a′i.

By Farkas’ lemma, there exist h : T−i × Z → R and αi ∈ ∆(Ai) such that

h(z | t−i)− (O(z | αi, a−i)−O(z | ai, a−i)) = 0 for all t−i, a−i, z,∑
t−i,z

h(z | t−i)w̄i(t−i, z) > 0.

(Indeed, h(z | t−i) is independent of t−i.) Thus O(· | αi, a−i)−O(· | ai, a−i) is independent of a−i,

and πi(ti) strictly prefers O(· | αi, a−i) to O(· | ai, a−i).

For part 2, fix any player i ∈ I. For each j 6= i and tj ∈ Tj , if aj ∈ PR1
j (tj), then let σj(· | aj , tj)

be the point mass on aj . If aj /∈ PR1
j (tj), then by part 1, there exists σj(· | aj , tj) ∈ ∆(Aj) such

that for any z ∈ Z, O(z | σj(· | aj , tj), a−j) − O(z | aj , a−j) is independent of a−j . Without loss

of generality, we assume that σj(· | aj , tj) ∈ ∆(PR1
j (tj)). For each a−i ∈ A−i and t−i ∈ T−i,

define σ−i(· | a−i, t−i) ∈ ∆(PR1
−i(t−i)) by σ−i(a

′
−i | a−i, t−i) =

∏
j 6=i σj(a

′
j | aj , tj) for each a′−i ∈

PR1
−i(t−i).

Pick any ti ∈ Ti and ai ∈ PR1
i (ti), which is a best response under state-dependent utility index

wi : A−i × T−i × Z → R and that
∑

a−i
wi(a−i, t−i, z) represents πi(ti). We will show that ai is a

best response in the second step of iteration.
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Define a state-dependent utility index w′
i : A−i × T−i × Z → R by

w′
i(a

′
−i, t−i, z) =

∑
a−i

σ−i(a
′
−i | a−i, t−i)wi(a−i, t−i, z)

for a′−i ∈ A−i, t−i ∈ T−i and z ∈ Z. (i) Since σ−i(· | a−i, t−i) ∈ ∆(PR1
−i(t−i)) for any a−i ∈ A−i and

t−i ∈ T−i, we have a−i ∈ PR1
−i(t−i) whenever (a−i, t−i) is non-null under the preference represented

by w′
i, (ii)∑

a′−i

w′
i(a

′
−i, t−i, z) =

∑
a−i,a′−i

σ−i(a
′
−i | a−i, t−i)wi(a−i, t−i, z) =

∑
a−i

wi(a−i, t−i, z),

which represents πi(ti), and (iii) for any a′i ∈ Ai,∑
a′−i

O(z | a′i, a′−i)w
′
i(a

′
−i, t−i, z)

=
∑

a−i,a′−i

O(z | a′i, a′−i)σ−i(a
′
−i | a−i, t−i)wi(a−i, t−i, z)

=
∑
a−i

O(z | a′i, σ−i(· | a−i, t−i))wi(a−i, t−i, z)

=
∑
a−i

(O(z | a′i, a−i) + h(z | a−i, t−i))wi(a−i, t−i, z)

=
∑
a−i

O(z | a′i, a−i)wi(a−i, t−i, z) +
∑
a−i

h(z | a−i, t−i)wi(a−i, t−i, z),

for any t−i ∈ T−i and z ∈ Z, where h(z | a−i, t−i) := O(z | a′i, σ−i(· | a−i, t−i)) − O(z | a′i, a−i) is

independent of a′i by the definition of σ−i(· | a−i, t−i). Since ai is a best response with respect to

wi, it is also a best response with respect to w′
i.

Part 3 follows from part 2.

Similarly to Example 11, Part 1 of Proposition 8 depends on the unbounded sensitivity of

preferences with respect to other players’ actions. For parts 2 and 3 of Proposition 8, it is important

that under the no-restriction assumption, all outcomes are “public” in the sense that players care

about the entire distribution over Z. These results no longer hold if Z = Z0 ×
∏

i Zi, the product

of the set Z0 of public outcomes and the sets Zi of private outcomes, and player i is assumed to

care only about the marginal distribution over Z0 × Zi.

6 Conclusion

We introduced preference-form games, developed the notion of preference rationalizability, and

showed that preference rationalizability is invariant to redundant types and states.

28



Throughout the paper, we restricted ourselves to the Anscombe-Aumann framework and as-

sumed state-dependent expected utilities. One could extend our framework to the Savage frame-

work or to non-expected-utility preferences, and relax various state independence or monotonicity

conditions assumed in Epstein (1997), Lo (2000) and Chen and Luo (2010).14 It is yet to be seen

whether such an extension would generate fruitful theoretical results and applications.
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